Computer-Aided Field Analysis of High Voltage Apparatus
Using the Boundary Element Method

ABSTRACT

The boundary element method (BEM) and its use in computer-aided field analysis is presented. The
BEM is compared against the finite difference method (FDM) and finite element method (FEM) for
two-dimensional and rotationally symmetric problems. The advantages of BEM are stated for
applications in high voltage power apparatus design. It is shown that BEM is superior to FDM and FEM,
both for linear and non-linear problems. The recent introduction of the BEM to the microcomputer
environment is also discussed.
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The boundary element method (BEM) and its use in
computer—aided field analysis is presented. The
EEM is compared against the finite difference
method (FDM) and finite element method (FEM) for
two—dimensional and rotationally symmetric prob—
lems. The advantages of BEM are stated for appli-
catians in high voltage power apparatus design. It
is shown that EEM is superior to FDM and FEM, both
for linear and nor-linear problems. The recent
introduction of the EEM to the microcomputer envi—
ronment is also discussed.

INTRODUCTICN

Calculation of design parameters for high voltage
power apparatus usually requires the solution of
the electromagnetic field equations in a region B
under prescribed boundary conditions on 9B. The
analytical methods are rather restricted to prob—
lems with simple geometries. The numerical meth—
ods, on the other hand, offering general applica—
bility have been the object of intense research.
Especially within the last forty years or so, var—
ious numerical methods have been developed owing
to the advent of powerful computers.

The common concept in the numerical methods is the
reduction of the goverming field equation or an
equivalent integral formulation into a linear sys—
tem of equations. These methods can be classified
1N two categories: the methods where approxima—
tions are to be made throughout the region By and
the methods where approximations are to be made
only on the boundary 9B. The finite difference and
finite element methods belong to the first cate—
gory while the boundary element methods belong to
the second.

FINITE DIFFERENCE METHOD

The method of <inite differences is among the
first numerical techniques that offered & broad
renge of applicability (11. In this method, uti-
lizing a truncated Tavlor series expansion in each
ccordinate direction, the differential operator is
discretized and applied at 2ach point of a rectil-—
inear grid placed on B. The resulting system of
equations is solved either iteratively or
directly. The disadvantages of the method are,
among others, the crude modelling of the problen
Jeometrv and the large number of unknowns espe—
ciallv in open +ield problems.

FINITE ELEMENT METHOD

The method of finite elements uses a variational
formulation (21,031. In this ~mathod, the region B
is divided into a finite number of non—separated,
non—overlapping, very small sub-areas of some pre—
scribed shape which are termed elements. Element
geometries and unknowns are expressed by polyno~
mials with nodal values as coefficients. Relating
these approximations to the operator equation
through minimizing a functional yvields the solu-
tion at the nodes. This method provides better
means, 'i.e. subsectional polynomial approxima-—
tions, to model the region boundaries. :

However, in many practical applications, the large
amount of input data and unknows required, the
derivative discontinuities in the finite element
mesh hence the geametrical model, calculation of
potential by interpolation and its derivatives
through differentiation, localized large errors,
no simple means of checking the accuracy of the
solution and the inability to model infinitely
extending regions exactly constitute the major
shortcomings of the finite element method.

Calculation of capacitance and inductance is also
difficult and wnreliable with the FEM as these
calculations require derivatives of the potential.

The derivative discontinuities in the finite ele—
ment mesh may be eliminated by using Hermitian or
cubic spline elements [(41. Different techniques;
e.g. infinite elements, pictwe frame method (S1;
have been developed to cater to open region prob—
lems. In all of them, the interior of the artifi-
cial boundary needs to be packed with finite ele—
ments. Large FEM problems still require mini or
mainframe computers.

EQNDARY ELEMENT METHID

The methods of the second cateqory solve a  bound-—
ary integral equation formulation of the problem
for some unknowns on 3B [6]. These methods bhave
been  attracting considerable attention for the
last twenty years or so because they not only pro—
duce precise results with far less data as com—
pared ta the methods of finite differences and
finite elements but also cater to open region
problems without any artificial truncation of the
reqgion and model problem geometries accurately.
Since the appro:imations are done only on the
bouwndary . the dimensionality of the problem is
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reduced by one. Furthermore, usually being bounded
and often completely continuous, integral opera—
tors as compared to differential operators admit a
wider selection of trial functions [7].

Direct methods in this category solve an integral
equation formulation for the uknowns directly
(8], while indirect metHods solve for the source
of the uninown [91. The boundary element method
presented in this paper is an indirect method. An
equivalent source, which would sustain the field,
is found by forcing it to satisfy prescribed con—
ditions under a free space Green’'s function which
relates the location and effect of the source to
any point on the boundary.

The use of Green’'s function, effectively elimi-—
nates the need for a finite element mesh or a
finite difference grid.

Once the source is determined, potential and field
are computed by integrating the source without
interpolation. This provides inherent stability.
Capacitance, inductance, and other parameters can
be calculated by integrating the #free charge,
which is derived from the equivalent source (10].
Frovided the problem is piecewise homogeneous, the
equivalent source is located only en the bound-
aries and interfaces of different media.

In non—-linear problems, the EEM still solves for
the source of the field and not for its potential.
All advantages of calculating the sowce applies.
Only reqgions with non-linearities contain volune
uwnknowns (1131,

FHYSICAL. BASIS

In this paper we restrict our attention to prob—
lems where a static approximation in two dimen—
sions is adequate.

In an electrostatic field,

VuE = 0 (1)

so tha.t'g is irrotational and bhence conservative
which is Xnecessary and sufficient condition for
the existence of a potential 4 in the form

- Ut (2)

E =

Again from Maxwell's equations, in a source-free
region

VD=0 (&3}

The constitutive relation for a linear, isotropic
region of dielectric constant € is

D = ¢E %)

If the region is homogeneous, combining (2), (3
and (4)

V=2 = O (%)

which is Laplace’s equation.
INTEGRAL EQUATION FORMULATION

In a bouwded region B with a piecewise smooth
boundary 3B, application of Green’'s theorem [12]
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to the unknown potential 4 and the free—space
Green’'s function [13]
K
Glr,r’)= 1n (7)
tr=r
satisfying
—VAG = 2n8(r—r’) ®
where 5 is the Dirac delta function, yields
a6 3¢ -2 () €
_fw o6 ar= #r) CeB ()
o on on (2] r €Bs

k is a constant chosen such that ki maxir—r’} which
ensures that the Green’'s function is strictly pos—
itive throughout B.

Bo 1is the region exterior to B. The validity of
(?) can be extended to an infinite region provided
that ¢ and 6 are regular at infinity [12]1. Thus
for the exterior region

G Mo Q - €B
- J(¢, .65 dr= £ (10)
on an —2n4(r) r €Bs
AR
Adding equations (9) and (10) results in
96 N 3'*‘0
(o) — ~ B (—— — —2) dr'= $(
J =) . ™ r $(r) (11)
dB
The choice of $ = 4o and
27 e
T{r') = (— = —) 12)
an
gives
j Glr,r') alr’) dr'= $(r) (13)

Ik

which is the simple layer inteqral eguation formu—
lation for the Laplace’'s equation [61,091.

The integrand contains the distributed souwrtce and
the free space Green’'s function. From (13), given
the source configuration, the potential can be
found everywhere in the region. Usually, bowever,
the sawce is not known but the potential or its
normal derivative are specified on  the tundary

and we seek an equivalent source that will sustain &
these conditions. Once the equivalent source is

known, any field value or parameter can be calcu-
lated.
For Dirichlet boundaries the equation to be

enforced is (13). For exterior Dirichlet problems
to construct an acceptable solution the boundary
decomposition [6]
r
$(r) = | Glr,r')o(r’ )dr'+C r €3R 14)

ok



is introduced where C is a constant to be deter—
mined under the side condition,

J alr’)dr’ =0 (15)
oB

(15) is necessary for the logarithmic potential to
be regular at infinity.

For Neumann boundaries a Fredholm equation of the
second kind results

$(r) = IG'(E,C‘ Yrd(r')dr ' +mr(r) r €B  (16)
oB
where ¢ (r) and G'(r,r’) are the normal derivative

of potential and the Green’'s function with respect
to the unprimed variable.

Along any interface the continuity of flux density
is enforced yielding

(e;—e,)IG' (r,r’ Yo lr’ ddr +(erex)o(r) = o] (17)
SR
where €, and €2 are the permittivity values of the

materials forming the interface.

To solve the above integral equations for tf'le
equivalent source the Galerkin method is used.

FROJECTION METHODS

Frojection methods are also called method of
weighted residuals or moment methods £81,{91,014].
Consider the operator equation

Ly =q (18)

where L is assumed to be a linear operator which
maps 7 to g uniquely. Newrmally L and g are known
and we bhave the deterministic problem of finding
7. That is, we are required to solve

T = L0 i

where L—* is assumed to exist and that the solu—
tion for T is uwnique. .

Let the solution be expanded by the series of
functions in the domain of the operator and let

Ay 8z.83,. .- be coefficients such that
m
“ -
TG = ) an3a () (20)
L
n=1

Far an exact solution the expansion functions must
form a complete set which is usually anfinite in
number. Rewriting (18) as

Lr(e) = ae) =0 (21

and substituting the expansicn functions to
approximate the potential, the residual is

pal
L}

Sl B () = g) (22)

I~ 13

2
—

which is equal to zero only if the coefficients
and expanaion functions can be found such that
they are the exact solution. In the projection
method the coefficients are found in such a way
that the residual is forced to be z2ero - giving
the best approximation.

A suitable inner product 1s taken with the resid—
wal and some prescribed functions over the range
of the operator. These functions are called
weighting functions, or more descriptively, test-
ing functions. The inner product is defined by

RO = I R we 5 m21,2,3,... (Z3)

WhEre Wi Wz ws,... are the testing functions. The
inner product is set to zero forcing the residual
to be orthogonal to the testing functions

WmsR> = O (24)
Substituting (22) into (24) and rearranging yields
m
AnCm s LB () = SAm,g(X)> (Z5)
n=1

For a solution of (25) we approximate (20) by a
finite sum. Eq. (25) is then a finite set of lin—
ear equations which can be put in matrix form as

Sa=b (26)
where
S = LB
Bm = “WmiQ>
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fAssuming the matrix is not singular it may be
inverted yielding the coefficients. These coeffi—
cients may then be substituted into (20) giving an
approximate (on rare occasion an exact) solution
for the charge.

The accuracy of the approximation will obviausly
depend upon the choice of the expansion and test-
ing functions, and the number of them used. These
coordinate functions must be linearly independent
as linear dependence will result in a singular S
matrix.

The particular choice of the expansion functions
being the same as the testing functions is called
Galerkin's method.

Eoundaries are discretized into individual sec—
rions which are referred to as boundary elements.
The expansion and testing functions, as well as
the gecmetry, are specified on an element—by—
element basis. Coefficients of the expansion func—
timns are normally defined at nodes on the ele—
ment. Each node is associated with a particular
expansion function. Using linear shape functions,

xy =1 -5

(28)

g

X =

the charge over each element is expressed as



T = Ty Xa(E) (29)
i=1

where m=2 as linear elements are used.

Using Lagrange gquadratic shape functions
X, = 282 - o+ 1
2z = A4l(5 — 22) 20)
ax = 2=2F - &

over the domain [0,11, global positions in carte—

sian coordinates are specified parametrically aover
each element as

m
% = } s (B)xe
i=1
(31)
m
v = § Xy (2 Yy
L
i=1
We wish to determine
{M“!L'Tﬂ}' = ima B> I2)
which can be put in vector notation as
L AT = <x,g> (%9

The operator L is dependent upon the boundary con—
ditions where the inner product is being calcu—
lated.

MICRODOMFUTER  IMPLEMENTATION

Jith the advent of powerful microcomputers, canpu-
tations that were once only possible on mini and
mainframe computers, are now possible on microcom—
puters. In addition, microcomputers offer highly
interactive graphics capabilities which can be an
invaluable aid in the design of a system.

The geometry, material properties, and other
information can be entered with the help of a
mouse or digitizer and immediately displayed. This
approach minimizes human error and the time
required to enter or modify a particular problem.

Early research placed emphasis on the solution
time of various problems, when in fact the data
preparation can be by far the most time consuming.
Data that takes houwrs to enter by hand can be
entered in minutes with the help of a powerful
user interface.

The boundary element method presented above has
been implemented, on a microcomputer, in the pro—
gram BLECTRO. The geometry of the problem that can
be solved is arbitrary. The conductors may be of
finite area or infinitesimally thin.

The solver steps over each element and applies the
appropriate inner product. All the integrals are
calculated over the simplex [o,13.

One difficulty is the integration of the Green's
function singularity which occurs when the obser-—
vation and source points coincide. This problem is
easily catered to by dividing out the singularity
and using a quadrature scheme containing the form
of the singularity. This technigue enables very
accurate integrations of the singular inteqrand.

Representing the potential at each point by a pha—
sor, steady state sinusoidal fields can be calcu-
lated with ease. For example, multiphase transmis—
sion line fields can be calculated by solving a
set of real and imaginary equivalent sources for
given complex boundary conditions.

The special features of the microcomputer environ—
ment; e.q. fast color graphics, color printer,
mouse or keyboard entry, math coprocessor, hard
disk, FRAM disk; are fully utilized to create an
integrated package which includes problem defini—
tion, analysis, data storage and transfer, draft-—
ing and presentation capabilities.

The user interface has been designed to require
minimal keyboard entry and hand motion. Menus are
structured to follow the natwral pattern of defin—
ing and solving a problem and to incorparate the
came sets of comnands that operate on different
objects. On-line help is provided in every menu.

The use of the boundary element method also bene—
fits the user interface. Geometry definition is
not built arocund a mesh and the accuracy of
results is easily checked by sound means.

One has very powerful options to test the accuracy
of a solution. On boundaries, the calculated and
assigned conditions can be compared. Along inter—
faces, the calculated and actual field discontinu—=
jties can be checked. One could test the +ield
values inside conductors. #According to maximum
principle of harmonic functions, the largest
errars occur on boundaries. Hence these checks
indicate the largest error in a solution.

In the FEM, since the results are provided by
interpolation no such simple and quick ways of
checking the accuracy of & solution exists — on
boundaries cne would obtain exactly what was
assigned.

AFFLICATIONS

A number of problems which have been solved both
by FEM and EEM are presented below. All EEM calcu-—
lations were done using ELECTRO on IEM FC type
microcomputers. Emphasis is placed on the time
required to input the data as well as to solve the
problem.

A Bus Rar Problem
Maximum value of electric field magnitude

is calculated
shown in Fig. 1.

(kV/mm)
for a pair of rectangular bus bars



Fig. 1: Rectangular bus bar configuration.

Table 1 presents the results for varying distance
d and cormer radius r. Dimensions are in inches.

Table 1
Bus bar problem results.

d r | eLECTRO FEM
2 = 2. )
2:8 [:4%8s| 28 25
50 {10 8.4 g5
A
20710 7.5 43
35 |10 7°% 3.8

When r = O, EEM consistently gives higher values
as the number of elements is increased. This is
expected as the field is infinite at the comer.
When cormers are rounded, FEM gives values higher
than EEM, possibly due to the artificial trunca—
tion of the open region.

A High Voltage Test Arrangement

Electrostatic potentials and fields are calculated
for a high voltage test arrangement using E1ECTRO.
This rotationally symmetric problem is extracted
from [15]). We modeled the sawtooth like meri-
dional profile with splines. The problem geometry
and dimensions are shown in Fig. 2.

- slvatredes
Wl 4teleninie ¢23

ate s

Fig. 2t Two metallic electrodes separated by a
dielectric piece.

The finite element mesh contained 1424 nodes (119

the boundaries) and is made up of 575 elements

on
(154 guadrilaterals and 421 triangles) and the
data preparation took % days. The c.p.u. time

needed for the solution. using an H &6/&0 com-
puter, was A minutes [131.
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Less than fifteen mirutes was required to enter
all the input data, using ELECTRO. A total of
forty boundary elements were used to solve the
problem. The solution time was three minutes and
twenty seconds using an IBEM FC computer, Fig. 3
shows the equipotential contours.

R

Fig. 3: Equipotential contour map for high voltage
test arrangement.

Field Analysis for an Epoxy-SFé6 Bushing

Electrostatic fields and potentials are calculated
for an epoxy-SF6 bushing. Fig. 4 shows the FEM
model which is, using about 1900 finite elements,
a very rough approximation of the actual problem.

AIR

RESIN BUSHING

AIR

HOUSING

ERRUPTER HOUSING.

;ﬁzzas;sc-aa,srs 8

Fig. 4: Finite element model of SF&6 resin bushing
and housing.

Fig. 5 shows the equipotential contours which
are non—physical. Consequently, the electric field
values, which are calculated by differentiating
the potential, are invalid.



Fig. S: Equipotential contours for SF& resin bush-
ing in steps of 5 units, obtained using FEM.

The EEM analysis of the same problem is performed
using 20 bouwndary elements. The problem is
modeled with exact data. Fig. & shows the dimen—
sions near the region of interest.

Simensicas Lo taehes.

Fig. 62 Dimensions near lower skirt, for SF6 resin
bushing problem (EEM model).

Reading the blue print and modeling the problem
took two hours. The solution time was 59 min. on
an IEM FC/AT. Fig. 7 shows the equipotential con—
tours. The EEM calculates both the near and far

fields at one time with the same accuwracy. One
can zoom into any area and obtain accurate
results. In the FEM, if one were to zoom into a

single element, ane would only obtain interpola-
tions from the nodal values of that element.

i

contours near aluminum

7:
flange in steps of 15kV, obtained using EEM.

Fig. Equipotential
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FEM requires the engineer to model a problem using
a mesh while the EEM model is identical to the
blue print. Electrostatic field magnitude is larg-
est on the surface. Therefore, most relevant
information is obtained from graphs of normal and
tangential fields along boundaries and interfaces.
Fig. 8 shows the electric field magnitude along
SFo-epory interface.

(11

m

Fig. 8: Magnitude of electric field along
SF&-epany interface, obtained using EEM.

CONOLUSTONS

The baundary element method has been shown to be
an efficient technique for the solution of
Laplace’'s equation for piecewise homogeneous
media. This is mainly due to the reduction of one
in dimensionality as all the unkncwns are located
only on the boundaries and interfaces. This dif-—
fors from the finite difference and finite element
methods in which the whole domain must be discret—
ired. The wnknown, computed using the boundary
alement method, is the equivalent charge that sus—
tains the field. Once the equivalent charge is
known any parameter can be derived.

The boundary element methad, combined with a
highly interactive user interface, automates the
computation  and analvsis of field distributions
around high voltage power apparatus. Problem qeom—
etries, materials and boundary conditions can be
conveniently described from the conceptual stage
and be analyzed to obtain the desired design par—
ameter. Accurate and reliable results are due to
“the boundary element method and the efficient user
interface,
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