Optimal design of an actuator by parametric optimization

By David Tong: Senior R & D Engineer

The following example demonstrates how to use Parametric and Find Optimal Parametric Result dialog to find the optimal design of an actuator. The optimal actuator configuration will have the best force per area ratio for a given current density.

The actuator is made of 1010 Steel and has a current density 2.604E6 A/m² assigned to the coil (magenta).

A parametric with 3 parametric variables in 3 loops is setup up to change the actuator shape while keeping current density constant. The total number of steps is 4480. The Force virtual work on the yoke is calculated for each step.

🕖 Parametric Setup	:	×
Parameters Defined d_core (Geometry : Displacement) Selected Parameter Parameter Type : Geometry : Displacement Parameter Name : d_core	Parametric Definition : 3 parameters, 3 loops, 4480 total steps	< >
Loop:3 Steps:14 Create Modify Delete<	Parametric Postprocessing (select Analysis menu) : 1 settings	

In Loop 1, the outer yoke is stretched to the right along the X axis. The amount of displacement is between 0 to 3 inches.

Parameter Type	Geometry : Displacement	▼ Loop	1
Parameter Name	a_outer_yoke	Steps	20
Select Geometry	1		
Creating Parameter T	able By		
Linear Steps	•		
Reference Point(x,y)	0 0	in	Pick(x,y)
Target Point(x,y)	3 0	in	
		Cancel	

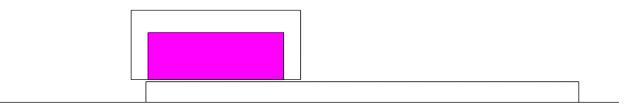
In Loop 2, the yoke is stretched up along the Y axis. The amount of scaling is between 1 and 3.5.

Parameter Type	Geometr	y:Scale		•	Loop	2	÷
Parameter Name	c_middle	_yoke_up			Steps	16	
Select Geometry	₽ Ş						
Creating Paramete	r Table By						
Linear Steps	•						
Reference Point(x,y)	1.82	0.665	in			Pick(x,y)
Scale Factors (S)	(, Sy)	1	3.5				
Appl	y Modificati	on		Cance	el		
	.						
-							

In Loop 3, both the core and yoke are stretched down the Y axis. The amount of displacement is between 0 to 0.5 inches.

Parameter Type	Geometry :	Displaceme	ent	•	Loop	3	•
Parameter Name	d_core				Steps	14	
Select Geometry							
- Creating Paramete	r Table By						
Linear Steps	-						
Reference Point(:	(.y)	0	0	in		1	Pick(x,y)
Target Point(x,y)		0	-0.5	in		_	
OPPU	y Modification						
	,			Cance			
	, meaneader						
	1						

After the parametric run is completed, the Final Parametric Table is shown below. The table contains the values for the parametric variables at each step and force components calculated on the yoke. Also included in the table are the force per area on the yoke. The force per area will be used by optimization in the next step.


		d_core (3)		a_outer_yol	æ (1)	c_middle	_yoke_up (2)						
	Displacement		nt	Displacement		Scale							
Steps	Loop Steps	X Disp.(in)	Y Disp.(in)	X Disp.(in)	Y Disp.(in)	X Scale	Y Scale	1. Fx(lbf)	1. Fy(lbf)	1. Fm(lbf)	1. Fa(deg)	1. Area(in^2)	1. Fx/Area(lbf/in*
	(1.1.1)	0	0	0	0	1	1	1.75691611	-6.09768461	6.34574754	-73.9268064	0.4656	3.77344525
	(1,1,2)	0	-0.0384615385	0	0	1	1	2.24401589	-7.74668179	8.06515257	-73.8450474	0.502523077	4.46549819
	(1,1,3)	0	-0.0769230769	0	0	1	1	2.80459365	-9.59065596	9.99231842	-73.699507	0.539446154	5.19902426
1	(1,1,4)	0	-0.115384615	0	0	1	1	3.43410918	-11.6160436	12.1130333	-73.5304759	0.576369231	5.95817575
5	(1,1,5)	0	-0.153846154	0	0	1	1	4.11441739	-13.835277	14.4341026	-73.4382602	0.613292308	6.70873796
3	(1,1,6)	0	-0.192307692	0	0	1	1	4.88641916	-16.2261661	16.94596	-73.2406191	0.650215385	7.51507772
,	(1.1.7)	0	-0.230769231	0	0	1	1	5.69914294	-18.8000352	19.6448862	-73.135565	0.687138462	8.29402405
1	(1,1,8)	0	-0.269230769	0	0	1	1	6.6236553	-21.5459753	22.5411149	-72.9115453	0.724061538	9.14791761
	(1,1,9)	0	-0.307692308	0	0	1	1	7.59391697	-24.4032991	25.5575543	-72.7146925	0.760984615	9.97906764
0	(1,1,10)	0	-0.346153846	0	0	1	1	8.65404787	-27.4282262	28.7610872	-72.4886738	0.797907692	10.8459261
1	(1,1,11)	0	-0.384615385	0	0	1	1	9.86917992	-30.5890977	32.1417736	-72.11837	0.834830769	11.8217731
2	(1,1,12)	0	-0.423076923	0	0	1	1	11.071121	-33.8082526	35.5748178	-71.8680343	0.871753846	12.6998246
3	(1,1,13)	0	-0.461538462	0	0	1	1	12.4800265	-37.115222	39.1572569	-71.4147356	0.908676923	13.7342836
4	(1,1,14)	0	-0.5	0	0	1	1	13.9302468	-40.3023049	42.6418521	-70.9326023	0.9456	14.7316485
5	(1,2,1)	0	0	0	0	1	1.16666667	2.40195815	-8.27519936	8.61674692	-73.8141085	0.5432	4.42186698
16	(1,2,2)	0	-0.0384615385	0	0	1	1.16666667	2.97262226	-10.1772589	10.6025036	-73.7177207	0.580123077	5.12412344
7	(1,2,3)	0	-0.0769230769	0	0	1	1.16666667	3.64826762	-12.2708169	12.801672	-73.4421268	0.617046154	5.9124712
8	(1,2,4)	0	-0.115384615	0	0	1	1.16666667	4.30469002	-14.550084	15.1735065	-73.518976	0.653969231	6.58240451
9	(1,2,5)	0	-0.153846154	0	0	1	1.16666667	5.07564441	-17.0355276	17.7755834	-73.4088558	0.690892308	7.34650589
20	(1,2,6)	0	-0.192307692	0	0	1	1.16666667	5.91560967	-19.6414208	20.5129191	-73.2387318	0.727815385	8.12789863
1	(1,2,7)	0	-0.230769231	0	0	1	1.16666667	6.83245582	-22.4889959	23.5039866	-73.1005214	0.764738462	8.93436927
22	(1,2,8)	0	-0.269230769	0	0	1	1.16666667	7.83169281	-25.4303337	26.60897	-72.8829168	0.801661538	9.76932586
C .													

From the program Solution menu, select Run Parametrics -> Find Optimal Parametric Result to open the Find Optimal Parametric Result dialog. The parametric variable in each loop should have been selected automatically for optimization. Select "Fx/Area" from the Select Parametric Result To Optimize drop down list. Click Find Optimal Parameters button. The estimated optimal parameter values and estimated maximum force per area will be displayed in the dialog window. Please note that this is an estimate. The actual value can be found by applying the optimal parameters to the model.

Find Optimal Parametric Result	×
Select parametric result to optimize 1. Fx/Area Find optimal parameters	
Select one parametric parameter per loop Loop #1 	
<	>
Estimate optimal parameter value	_
a_outer_yoke x=2.25184E+00 (in); y=0.00000E+00 (in) c_middle_yoke_up x=1.0000E+00; y=2.29607E+00 d_core x=0.00000E+00 (in); y=-2.25743E-01 (in) Estimated maximum = 1.58248E+02 (lbf/in^2)	
Apply optimal parameters to current model Cancel	

IMPORTANT: If you have more than one parametric variable defined in a loop, it is important to define all the parametric variables to be a function of a single parametric variable in the loop. **The optimization algorithm can only optimize one parametric variable per loop.** If a parametric variable cannot be made dependent on another parametric variable in the same loop, consider moving the parametric variable to a new loop. Failure to follow this rule would produce erroneous results.

Note: the 1st letter of a parametric variable can be used in a function of another parametric variable. The "#" symbol can also be used in a function to substitute for the current step number. Click Apply Optimal Parameters To Current Model button will modify the current model to the configuration that produced the optimal force per area.

Solve the model and calculate the force on the yoke to give actual force in X direction 677.7 (lbf). The yoke area is 4.3 in^2 . The actual force per area is 677.7 / 4.3 = 157.6 (lbf/in²)