
COMPUTER-AIDED MAGNETIC FIELD ANALYSIS
USING THE BOUNDARY ELEMENT METHOD

ABSTRACT

Efficient design of electromagnetic devices requires the analysis of electric and magnetic field
distributions. To this end, the boundary element method (BEM) has been shown to be a powerful
technique. This paper presents the use of BEM in computer-aided magnetic field analysis. The
advantages of BEM over the finite element method (FEM) are stated. The recent introduction of
BEM in a generalized, multi-purpose computer-aided design package is discussed. Emphasis is
placed on the ease of use and calculation of design parameters. Modeling and solution of
problems which include nonlinear materials and permanent magnets are given.
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Efficient design of electromagnetic devices requires the 
analysis of electric and magnetic field distributions. To this end, 
the boundary element method (BEM) has been shown to be a 
powerful technique. This paper presents the use of BEM in 
computer-aided magnetic field analysis. The advantages of 
BEM over the finite element method (FEM) are stated. The 
recent introduction of BEM in a generalized, multi-purpose 
computer-aided design package is discussed. Emphasis is 
place on the ease of use and calculation of design parameters. 
Modeling and solution of problems which include nonlinear 
materials and permanent magnets are given. 
 
INTRODUCTION 
 
Computer-aided analysis of field distribution for evaluating 
electromagnetic device or component performance has become 
the most effective way of design. Analytical methods have 
limited uses and experimental methods are expensive and time 
consuming. 
 
A typical magnetic field problem is described by defining the 
geometry, material properties, currents, boundary conditions 
and the governing field equations. Simulation of fields on the 
computer require the input of the above, the numerical solution 
of the field equation and output of desired parameters. The 
process is repeated until optimum values for the design 
parameters are obtained. 
 
Numerical solution of the field equations has been an area of 
intense research. Finite difference method [1], finite element 
method [2] and boundary element method are used for the 
numerical solution of the field equations. These methods have 
been reviewed in an earlier paper [3] and boundary element 
method has been found to be superior to the rest. 
 
The method of finite differences is the earliest. The 
disadvantages of this method are among others, the crude 
modeling of the problem geometry and the large number of 
unknowns especially in open field problems. 

The finite element method provides subsectional 
polynomial approximations to model the region 
boundaries. However, in many practical problems, the 
large amount of input data and unknowns required, the 
derivative discontinuities in the finite element mesh hence 
the geometrical model, calculation of potential by 
interpolation and its derivatives through differentiation and 
the inability to model infinitely extending regions exactly 
constitute the major shortcomings of this method. Different 
techniques have been developed to cater to open region 
problems. In all of them, the interior of an artificial 
boundary needs to be packed with finite elements. Large 
FEM problems still require mini or mainframe computers. 
 

BOUNDARY ELEMENT METHOD 
 
The boundary element method employs an integral 
equation formulation [4]. Since the unknowns are placed 
only on the boundary the dimensionality of the problem is 
reduced by one. 
 
The boundary element method not only produces precise 
results with far less data as compared to the methods of 
finite differences and finite elements but also caters to 
open region problems without any artificial truncation of 
the region and models problem geometries accurately [5], 
[6]. 
 
An equivalent source, which would sustain the field, is 
found by forcing it to satisfy prescribed conditions under a 
free space Green’s function which relates the location and 
effect of the source to any point on the boundary. 
 
The use of Green’s function, effectively eliminates the 
need for a finite element mesh or a finite difference grid. 
 
Once the source is determined, potential and field are 
computed by integrating the source without interpolation. 
This provides inherent stability. 
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In non-linear problems, the BEM still solves for the source of 
the field and not for its potential. All advantages of calculating 
the source applies. Only regions with non-linearities contain 
volume unknowns [7]. 
 

MAGNETIC FIELD EQUATIONS 
 
Electromagnetic field is described by Maxwell’s equations. 
Depending on the materials, boundary contitions and sources, 
the field can be shown to be governed by one or more partial 
differential equations. The geometry of the problem usually 
determines if a two- or three-dimensional analysis will be 
suitable. 
 
In this paper, we will restrict our attention to two-dimensional 
stationary or slowly varying magnetic fields. 
 
From Maxwell’s equations we have,  
 

Ο=Β•∇  

(1) 
and 

Jx =Η∇  

(2) 
(1) permits us to determine a magnetic vector potential A as,  
 

Α∇=Β x  

(3) 
The constitutive relation in an isotropic material is 
 

ΗΒ=Β )(µ  

(4) 
Taking the curl of (4) and expanding the right hand side utilizing 
a well-known vector identity results in, 
 

Η∇Β+ΗΒ∇=Β∇ xxx )()( µµ  

(5) 
substituting (3) and (2) into (5) yields,  
 

Jxxx )()( Β+ΗΒ∇=Α∇∇ µµ  

(6) 
If µ is independent of B, we have 

 

Jxx µ=Α∇∇  

(7) 
For a z-directed current density, in two-dimensions, (7) reduces 
to 

zz
z Jµ=Α∇  

(8) 

which is Poisson’s equation. 
 
For problems which contain linear materials only, (8) is the 
governing field equation. In problems which include non-
linear materials, (6) has to be solved iteratively. 
 
Boundary element method entails the conversion of the 
partial differential equation into an integral equation, as 
outlined in [3]. The integrand contains the equivalent 
source and the free space Green’s function or its normal 
derivative depending on the boundary condition. Along 
interfaces the discontinuity in the tangential component of 
magnetization is utilized to arrive at the intergral equation. 
Impressed fields and contributions from permanent 
magnets form part of the forcing function. 
 
The integral equation is discretized along boundaries and 
interfaces using the Galerkin method. Galerkin method is 
one of the projection methods which are also called 
method of weighted residuals or moment methods [5], [6], 
[8]. 
 
Boundaries and interfaces are divided into small sections 
which are referred to as boundary elements. This 
discretization results in a set of linear simultaneous  
equations for the unknown equivalent current density 
coefficients. The solution of this system of equations, 
assuming the matrix is not singular, yields the equivalent 
current density distribution. 
 
The accuracy of the approximation will obviously depend 
upon the choice of the expansion and testing functions, 
and the number of them used. These coordinate functions 
must be linearly independent as linear dependence will 
result in a singular S matrix. 
 

COMPUTER-AIDED DESIGN 
 
In a typical computer-aided design cycle, the engineer 
enters the description of the problem and calculates the 
parameters of interest. If the values are found 
unsatisfactory, the design is modified and parameters are 
recalculated. This cycle is repeated until the desired 
values are obtained. The efficiency of the procedure is 
measured by the amount of time required to complete the 
design. 
 
The factors that affect the efficiency are the ease of use, 
the accuracy of results, the capabilities and speed of the 
program. 
 
Ease of use of a package is not a concept totally isolated 
from the numerical technique used. There are a number of 
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important factors which are brought about by the solution 
technique used in the package and which contribute to the ease 
of use. 
 
Industrial users agree that perhaps the most significant issue is 
the time required to define the problem. In a boundary element 
package the user does not mesh every region. This is by far the 
biggest time saver. FEM requires the engineer to model a 
problem using a mesh while the BEM model is identical to the 
blue print. 
 
Again, in a boundary element package, the user does not solve 
the problem twice in order to calculate forces. Global and local 
forces are calculated simply by integrating the cross product of 
the current density with the magnetic induction. Torque 
calculations are performed with the same ease and accuracy. 
 
 

MICROCOMPUTER IMPLEMENTATION 
 
With the advent of powerful microcomputers, computations that 
were once only possible on mini and mainframe computers, are 
now possible on microcomputers. In addition, microcomputers 
offer highly interactive graphics capabilities which can be an 
invaluable aid in the design of a system. 
 
The geometry, material properties, and other information can 
be entered with the help of a mouse or digitizer and 
immediately displayed. This approach minimizes human error 
and the time required to enter or modify the particular problem. 
 
Early research placed emphasis on the solution time of various 
problems, when in fact the data preparation can be by far the 
most time consuming. Data that takes hours to enter can be 
entered in minutes with the help of a powerful user interface. 
 
The boundary element method has been implemented, on a 
microcomputer, in the program MAGNETO. The geometry of 
the problem that can be solved is arbitrary. The conductors may 
be of finite area or infinitesimally thin. Non-linear materials and 
permanent magnets are readily catered to. 
 
The solver steps over each element and applies the appropriate 
inner product. All the integrals are calculated over the simplex 
[0,1]. 
 
One difficulty is the integration of the Green’s function 
singularity which occurs when the observation and source 
points coincide. This problem is easily catered to by dividing out 
the singularity and using a quadrature scheme containing the 
form of the singularity. This technique enables very accurate 
integrations of the singular integrand. 
 

Representing the potential at each point by a phasor, 
steady state sinusoidal fields can be calculated with ease. 
For example, multiphase transmission line fields can be 
calculated by solving a set of real and imaginary 
equivalent sources for given complex boundary conditions. 
 
The special features of the microcomputer environment: 
e.g. fast color graphics, color printer, mouse or keyboard 
entry, math co-processor, hard disk, RAM disk: are fully 
utilized to create an integrated package which includes 
problem definition, analysis, data storage and transfer, 
drafting and presentation capabilities. 
 
The user interface has been designed to require minimal 
keyboard entry and hand motion. Menus are structured to 
follow the natural pattern of defining and solving a problem 
and to incorporate the same sets of commands that 
operate on different objects. On-line help is provided in 
every menu. 
 
 

APPLICATIONS 
 
Three sample problems which have been solved using 
MAGNETO are presented below. All calculations were 
done and all illustrations were generated using MAGNETO 
on IBM PC type microcomputers. Emphasis is placed on 
the time required to input the data as well as to solve the 
problem. 
 
A Plunger Problem 
 
The cross-section of the rotationally symmetric plunger 
configuration is shown in Fig. 1. 

 
 

Fig. 1: Cross-section of rotationally symmetric plunger 
geometry. 

Geometry of the problem is entered interactively, using a 
mouse, in a matter of minutes. Commonly used materials 
are kept in a table for easy access. MAGNETO, in real 
time determines simply or multiply-connected regions from 
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geometry. The materials and currents are assigned by simply 
selecting the regions. Boundary elements are generated only 
on segments between dissimilar media. 
 
After the program determines the equivalent current distribution 
various parameter can be calculated. Fig. 2 shows a contour 
map of fieldlines. 
 

 
Fig. 2: Contour map of equi-fieldlines for the plunger problem. 

 
The goal of this design is to increase the force acting on the 
armature. Force is calculated by integrating the cross product of 
the current density with magnetic induction. In this case, since 
the equivalent current density is in the angular direction, it is the 
radial component of magnetic induction which creates the force 
in z-direction. Fig. 3 shows the graph of radial component of 
magnetic induction in the air gap. 
 

 
 

Fig. 3: Graph of radial component of magnetic induction in air 
gap. 

 
 
A useful and informative form of display is the three 
dimensional surface representation of scalar field quantities. 
Fig. 4 shows the magnitude of magnetic induction in the 
immediate vicinity of the air gap. This form of display helps 
visualize the field distribution over an area at a glance. 
 

 
Fig. 4: Surface representation of magnitude of magnetic 

induction. 
 
A Commutated DC Machine 
 
The magnetic vector potential and fields are calculated for 
a commutated DC machine under no load condition, using 
MAGNETO. This problem, shown in Fig. 5, is taken from 
[9] 

 
Fig. 5: Pole pitch cross-section of DC machine. 

 
The geometry of the problem consists of arcs and lines. 
Approximately one hour was required to enter the 
problem. We believe that, due to the holes of various sizes 
in the yoke and pole laminations, a large number of finite 
elements and a much longer input time would be required 
to model the same problem using a finite element 
package. 
 
The relative permeability of the yoke, pole and armature 
laminations is assumed to be 1000. A total of 295 
boundary elements were used to solve the problem. The 
solution time on an IBM-AT was one hour and fifteen 
minutes. Fig. 6 shows the flux map near the mid gap. 
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Fig. 6: Flux map near the mid gap for DC machine problem. 

 
The graph of the magnitude of the magnetic induction along the 
mid gap is shown in Fig. 7. Unlike the results of the finite 
element analysis, boundary element results are smooth and 
symmetric about the center line. 

 
Fig. 7: Graph of magnitude of magnetic induction in mid gap. 

 
A Permanent Magnet Motor 
 
The magnetic field distribution and torque are calculated for a 
permanent magnet motor. The geometry of the motor cross-
section and materials are shown in Fig. 8. The coercive force of 
the magnets is 8320 Oersteds and the remanent field is 8600 
Gauss. Using MAGNETO, entering the problem from the blue 
print took about two hours. 
 

 
Fig. 8: Cross-section of the permanent magnet motor. 

 
Half plane symmetry of the rotor and stator geometry was 
utilized for the solution. A total of 253 boundary elements 
were used. The solution time, including the non-linear 
iterations, was about 1.5 hours using an IBM PS/2 Model 
80. Fig. 9 shows the flux map near the upper part of the 
motor. The boundary element method calculates both the 
near and far fields at one time with the same accuracy. 
One can zoom into any area and obtain accurate results. 
In the FEM, if one were to zoom into a single element, one 
would only obtain interpolations from the nodal values of 
that element. 
 

 
Fig. 9: Flux map near the upper part of the motor. 

 
The calculated torque was 898 lb x in/m and the measured 
was 866 lb x in/m. The difference which is less than 4% 
may be attributed to the end effects. 
 
 

CONCLUSIONS 
 
The boundary element method has been shown to be an 
efficient technique also for the solution of Poisson’s 
equation for non-linear media. This is mainly due to the 
reduction of one in dimensionality as all the unknowns are 
located only on the boundaries and interfaces. This differs 
from the finite difference and finite element methods in 
which the whole domain must be discretized. The 
unknown, computed using the boundary element method, 
is the equivalent source that sustains the field. Once the 
equivalent source is known any parameter can be derived. 
 
The solution technique used in a package is responsible 
not only for the accuracy of results but also for the ease of 
use of the package. 
 
The boundary element method, combined with a highly 
interactive user interface, automates the computation and 
analysis of magnetic field distributions for motor, 
generator, solenoid, speaker, actuator and other magnetic 
device design. 
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Problem geometries, materials, currents and boundary 
conditions can be conveniently described from the conceptual 
stage and be analyzed to obtain the desired design parameter. 
Accurate and reliable results are due to the boundary element 
method and the efficient user interface. 
 
ACKNOWLEDGEMENTS 
 
I gratefully acknowledge the courtesy of companies whose 
results and data I have been able to use in this paper. 
 
This research, in part, was supported by an IRAP-M grant from 
National Research Council of Canada. 
 
 
REFERENCES 
 

[1] G.E. Forsythe and W.R. Waso. Finite-Difference Methods 
for Partial Differential Equations. New York: John Wiley & 
Sons. 1960. 

[2] O.C. Zienkiewicz. The Finite Element Method in 
Engineering Science. New York: McGraw-Hill, 1971. 

[3] Y.B. Yildir, “Computer-Aided Field Analysis of High 
Voltage Apparatus Using the boundary Element Method”. 
Proc. International Coil Winding Conference. Rosemont, 
Illinois, Oct. 5-8, 1987. 

[4] S.G. Mikhlin. Integral Equations. New York: Pergamon 
Press, 1964. 

[5] Y.B. Yildir, A Boundary Element Method for the Solution 
of Laplace’s Equation in Three-Dimensional Space. Ph.D. 
Dissertation, University of Manitoba, 1985. 

[6] B.W. Klimpke, A Two-dimensional Multi-media Boundary 
Element Method. M.Sc. Dissertation, University of 
Manitoba, Winnipeg, Man., Canada R3T2N2, 1983. 

[7] M.H. Lean and D.S. Bloombers, “Nonlinear Boundary 
Element Method for Two-dimensional Magnetostatics”. J. 
Appl. Phys., Vol. 55. No. 6. 1984. 

[8] R.F. Harrington, Field Computation by Moment Methods. 
Reprinted by R.F. Harrington. R.D.2. West Lake Road, 
Cazenovia, N.Y.. 1968. 

[9] N.A. Demerdash et al., “Analysis of the Magnetic Field in 
Rotating Armature Electronically Commutated DC 
Machines by Finite Elements”. IEEE Trans. On PAG 101. 
PAG 107. No.7. July 1984. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 


	defaultheader.pdf
	Local Disk
	file:///C|/Inetpub/wwwroot/Papers/pdfheader_default.htm


	Tech_7mxHeader.pdf
	Local Disk
	file:///F|/Papers/pdfheader_default.htm



