
PUSHING THE LIMITS OF 2-D BOUNDARY ELEMENT
EDDY CURRENT CODES -- CONNECTIVITY

SUMMARY

The serious electromechanical designer is faced with optimizing the shape of a device for a number of
conflicting criteria. If the design involves eddy currents with saturable media, a true optimization
will take a long time, since it requires a lot of information as input with multiple variable variations.
If the analyses must be performed in three dimensions, an inordinate amount of computer time is required
even for the simplest of problems. No small advantage is accrued if the problem can be approached in two
dimensions. The paper outlines a technique for examining eddy currents induced in complex series wound
coils for which the connections must be specified to ensure solution accuracy. A boundary element
formulation is adopted in which an arbitrary constant vector potential is assigned to each conductor. The
connection of the coils can be specified by placing additional constraints on these vector potentials.
The technique is tested against two experiments involving forces imposed on flux eliminating coils.
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SUMMARY 
 
The serious electromechanical designer is faced with optimizing the shape of a device for a 
number of conflicting criteria. If the design involves eddy currents with saturable media, a true 
optimization will take a long time, since it requires a lot of information as input with multiple 
variable variations. If the analyses must be performed in three  dimensions, an inordinate amount 
of computer time is required even for the simplest of problems. No small advantage is accrued if 
the problem can be approached in two dimensions. The paper outlines a technique for examining 
eddy currents induced in complex series wound coils for which the connections must be specified 
to ensure solution accuracy. A boundary element formulation is adopted in which an arbitrary 
constant vector potential is assigned to each conductor. The connection of the coils can be 
specified by placing additional constraints on these vector potentials. The technique is tested 
against two experiments involving forces imposed on flux eliminating coils. 
 
 

INTRODUCTION 
 
Although three-dimensional eddy current codes have received much attention over the past two 
years,1,2 their usefulness in optimizing a design is limited due to the long execution time. Design 
optimizations such as that suggested by Reference 3 require a lot of information to run an efficient 
inverse calculation. Geometries involving series wound coils virtually demand a three-dimensional 
analysis unless an efficient means of defining the connection of the coils can be realized. This 
paper outlines a boundary element method (BEM) which allows the connection of isolated coils to 
be defined. 
 
One area in which the use of such coils is important is in high speed MAGnetically LEVitated 
(MAGLEV) vehicles. Here flux eliminating coils such as the null flux coil are used to produce the 
lift on the vehicle by induction.4 We seek to apply this technique in the force prediction eliminating 
coils. 
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THEORY 
 
The goal of a boundary element formulation is encapsulated in Figure 1. Each conducting object 
is to be replaced with a double layer skin of surface current. The fictitious layer of surface current 
on the outer layer of the body will serve to reflect the body’s induced field signature exterior to the 
body. The layer of surface current just interior to the body is responsible for the complete field 
interior to the body. These surface currents are chosen to guarantee that the tangential H field is 
continuous, 0ˆ =Hxn

�

and the normal B field is continuous 0ˆ =⋅ Bn
�

. We follow the leads found 

in References 5 and 6 for this development. Combining Ampers’s and Faraday’s laws yields the 
relation 
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The solution of the vector Helmholtz equation (3) at some field point r due to a source point r’ is 
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In two-dimensional space, Green’s function involves the zero-order Hankel function of the second 
kind and ,'rrR �� −≡  as 
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Now it remains to impose the boundary conditions. Based on the gauge condition (2), both the 
electric field and the magnetic field intensity can be expressed in terms of the vector potential as 
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In two dimensions, it necessarily follows that 0=⋅∇ A  since A  has only one component, and thus 
 

AjE ω−=  
(8) 

 
Thus in two dimensions, enforcing 0ˆ =⋅ Bn

�

 is synonymous with enforcing 0ˆ =Exn
�

. 

 
The electric or magnetic field in the interior region of the body is that due to the fictitious surface 
current K2, while the field in the exterior of the region is that resulting from the surface current K1 
plus all impressed sources. Another way of representing the boundary conditions on the interface 
S with an outward normal n̂  in terms of the components of E and H is: 
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For the work in this paper there is no imposed E field, but we keep it for completeness. Combining 
(9) and (10) with (4) yields the final result 
 

SrrEdSrKrrkGdSrKrrkGj i
z

ss

∈−=�
�

�
�
�

�
− ��

��

�

�

�

���

�

�� ),(')'()',;(')'()',;( 222111 µµω  

 (11) 
 



 

 

 

SrrHxn
rKrK

dSrK
n

rrkG
dSrK

n
rrkG i

ss

∈−=
+

+
∂

∂
+

∂
∂

− ��
��

�

�

�

�

�

�

�

��

�

�

��

),(ˆ
2

)()(
')'(

)',;(
')'(

)',;( 21
2

2
21

1 µ  

 
 (12) 

 
The surfaces are discretized into elements; the unknowns are assumed linear over each element 
and the Galerkin technique used to build a matrix for determining the unknowns. 
 
 

SPECIFYING CONNECTIVITY 
 
The connection of conductors is specified as follows. An additional constant vector potential Ac is 
assumed within the interior of each conductor so that (4) on the interior of a region (e.g. region 2) 
becomes 

222 ')()',()( c

v
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(13) 
 
An additional unknown constant vector potential is assigned to the interior of every region for 
which a connection condition is to be specified. For purposes of discussion there are four 
separate regions which are part of the same conductor. Assume the current is in the same 
direction for conductors 1 and 3 and likewise for conductors 2 and 4. The above assignment 
would imply the need to generate four additional equations. Three of these four equations come 
from the requirement that each region carry the same induced current, i.e. 
 

ldHldH
ss

����

⋅−=⋅ ��
++
21

 

(14) 
ldHldH

ss

����

⋅−=⋅ ��
++
32

 

(15) 
ldHldH

ss

����

⋅−=⋅ ��
++
43

 

(16) 
 
The final equation recognizes that the four windings which constitute the series wound coil do not 
have a separate potential imposed across them; the current which flows is that due to magnetic 
induction by a changing magnetic field. There is no imposed Φ∇− . Thus, the final condition to be 
imposed is 
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This condition ensures that the imposed potential (not induced) potential around the loop 
comprised by the four conductor regions is identically zero. Such a condition forces the current to 
seek a median value from that witnessed when no such external conditions are imposed. Observe 
that 
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The surface currents R  account for the rate of change of flux. The constant vector potential Ac  is 
added to account for the imposed electric potential V which is zero. 
 
 

RESULTS 
 
The first problem analysed is the force induced on a flux eliminating coil sandwiched in a 
magnetizable yoke (Figure 2). The end view for the assembly is depicted in (17). The iron yoke is 
made of carbon 1010 steel having the B/H curve shown in Figure 3. 
 



 

 

 
The average B field with a 135kA 60 Hz excitation in the airgap is 1.37 T. Two flux eliminating 
coils in parallel have an inductance of 187 Hµ  with a resistance of 53 Ωm . When the coils are 
displaced upward vertically 0.25”, the flux linking the coil is 0.0059 webers. The equivalent 10-turn 
coil would therefore have an induced current 
 

A
xxj

jI ind 36 1053)10187(377
377)00590(10

−− +
⋅

=  

(18) 
 
The actual length of these coils was 23”. The magnet depth was 13”. Since there are two vertical 
lengths of conductor each 13” long contributing to the lift, the lift forces is 
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The 2D lift force predicted was 62.52 lb/in. The equivalent lift must be computed with a 13” 
magnet using 23” coils. Both the depth of the magnet and the equivalent length of the coil must be 
adjusted as the overprediction is expected from the failure of the code to estimate the end effects. 
The following Section addresses a refinement for this problem. 
 
 

ROTATING EMBODIMENT 
 
The second problem analyzed was a rotating wheel, the rotor of which contains null flux coils. The 
null flux coil is simply a series wound “figure 8” shaped coil. The null flux coils rotating between 
transverse magnets as in Figure 4 yield lift forces on the null flux coil when it is off-centered 
vertically. Magnets oriented in opposition induced currents to recenter the coils between the 
magnets. The coils span 6.75o but repeat on 8o centers. The copper coils have a thickness of 
0.3125”, and are mounted on a 24” radius wheel with the centers of the coils located at a mean 
radius of 22”. Figure 5 shows the layout of the coils between two sets of repulsive magnets and 
four sets of transverse magnets. 
 
The coils are placed between 1.2” thick magnets with a 0.5” carbon steel back plate as suggested 
in Figure 6. The iron has a B/H curve identical to that in Figure 3. The NdFeB magnets have a 



 

 

coercive force Hc=10.4kOe (827.6 kA/m) with a Br=11.2KG(1.12T). The series coil connection is 
such that it forces current to flow in the same direction in the first and third conductors down, as 
well as the second and fourth. The coil space area houses a 212-turn winding with a 70% packing 
factor. As the wheel mounted coils rotate at a speed Ω , the coils which span o756 ⋅=α  see an 
equivalent electrical frequency f, based on the tip speed of the wheel v and the radius R of 
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CORRECTING FOR END EFFECTS 

 
When the length of the end winding is comparable to the size of the coil, it is necessary to lower 
the conductivity to correct for the additional resistance. Figure 8 shows a plain view of the coil 
layout. The lower coil’s height is 1.875” and the depth is only 0.875”, so the correction on 
conductivity for this copper coil is 
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The upper coil’s height is 1.3125” and the depth is 1.875”. Applying the correction in (21) to this 
coil yields a modified conductivity m/7552 Ω⋅=σ  for the upper coil. 
 
The remaining question remains, “How is the depth accounted for?”. A two-dimensional problem 
computes forces on a per unit depth basis. From Figure 8 it seems appropriate to use the average 
working straight length of the conductor into the page, i.e. 
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A quantitative way of refining this value if a 3-D program is available is to compute the flux linkage 
of the magnet with the coil. From 2-D flux linkage, a depth can be computed which yields the 
same flux linkage when the coil and magnets are aligned. This flux calculation, although 3-D, can 
be performed statically. 
 



 

 

 
 
 

RESULTS 
 
Varying the frequency is equivalent to mapping the guidance force as a function of tip speed. The 
lateral guidance force was measured against speed using a load cell mounted to the magnet 
assembly depicted in Figure 5, gimballing the weight of the magnet assembly. Figure 6 shows a 
comparison of the forces predicted and measured for the test wheel. Guidance is delivered only 
when the coil is off-centered laterally; an offset of 0.125” was enforced for this test. The reader 
acquainted with induction motor torque-speed curves should be aware of the importance of the 
coil L/R time constraint’s influence on the force-speed curve. Increasing the resistance of the 
winding flattens the numerical prediction, bringing it more in line with the measured response. A 
second consideration is that the numerical prediction assumes the coil is in a time-harmonic state. 
With only a single repulsive magnet on the leading and trailing edge of the assembly, this 
assumption is not warranted, and thus some error is expected. 
 
The sinusoidal assumption with a series of four transverse magnets in lift if, however, good. The 
prediction of lift is, however, quite a bit more difficult due to the closure path of the magnetic field 
into the third dimension. A top view of the transverse magnet assembly is shown in Figure 9. The 
series of four magnets are drive flux through the 0.5” airgap. This top view is accurate at the 
average radius for the assembly (20”). In this view, the null flux coil component conductors cannot 
be represented. One means of dealing with the difficulty of the field closure path is to construct an 
artificial closure path outside the region of interest is suggested in Figure 10. The surrounding 
material is arbitrarily selected to have a linear permeability 1000=rµ . The NdFeB magnets are 
modelled with equivalent surface currents; the strength of these surface currents is chosen to 
yield the same B field in the gap as the average field witnessed on the midline of the central 
magnets of Figure 9. Because the magnets and coils repeat on 8o centers, the expression linking 
tip velocity to frequency is (20) with  a = 8o. The coil only delivers a lift force when it is off-centered 
vertically; the variable c indicating the distance between the top side of the magnets and the top of 



 

 

the coils was used as this indicator. The two experiments c=1.375” and 1.675” correspond to a 
vertical offset of the coils of 0.48” and 0.73”, respectively. The results for c = 1.375” are shown in 
Figure 11. The comparable experiment with a larger c of 1.675” is shown in Figure 12. 
 
 

CONCLUSIONS 
 
A technique of dictating coil connectivity is discussed and tested for two distinct problems. The 
accuracy of the prediction is in keeping with that expected for problems with a relatively small 
depth. Being able to dictate the connections for the coils affords considerable flexibility in complex 
optimization designs. The actual shape of the yoke depicted in (17) was selected using multiple 
parametric analyses to optimize the lift for a MAGLEV vehicle. End effects are accounted for by 
lowering the conductivity by the ratio of the coil’s end turn length to its depth into the page. Fringe 
effects are accounted for by averaging the working conductor length. 
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