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ABSTRACT

A computer program, OERSTED, for simulating and analyzing two-dimensional or rotational symmetric
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developed at the Integrated Engineering Software (IES). Like other widely used CAE tools developed
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technique. OERSTED provides a very friendly user interface, exact modelling of boundaries and accurate
results. The program has the capability of calculating the skin and proximity effect, resistance and
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the boundary integral equation formulation and its numerical solution are described. Several application
examples are presented to show the accuracy, efficiency and reliability of the program.
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ABSTRACT 

 
A computer program, OERSTED, for simulating and analyzing 
two-dimensional or rotational symmetric eddy current problem 
with the steady-state sinusoidal time-varying source excitation 
has been developed at the Integrated Engineering Software 
(IES). Like other widely used CAE tools developed at IES, 
OERSTED is a software package based on the most 
advanced Boundary Element Method (BEM) technique. 
OERSTED provides a very friendly user interface, exact 
modelling of boundaries and accurate results. The program 
has the capability of calculating the skin and proximity effect, 
resistance and inductance, eddy current, electric and magnetic 
fields, Joule loss, forces and torques. In this paper, the 
boundary integral equation formulation and its numerical 
solution are described. Several application examples are 
presented to show the accuracy, efficiency and reliability of the 
program. 
 

INTRODUCTION 
 
Eddy currents are found in any conducting material which is 
subjected to a time-varying magnetic field. They occur in all 
types of electrical equipment, for example, induction motor, 
power cable, coil, etc. It is often possible to put these currents 
to good use, such as induction heating, where the ohmic 
losses are sufficient to melt the metal. On the other hand, for 
certain applications, steps may have to be taken to reduce the 
effects of the eddy currents. For example, the cores of 
transformers are laminated in order to reduce the loss and 
enable the core to carry the required magnetic flux, which 
would otherwise be almost completely inhabited by the eddy-
current reaction field. Therefore, the analysis of eddy currents 
becomes very important in the process of electromagnetic 
equipment design. 
 
Analytical methods for the analysis of eddy currents are limited 
to only several very simple geometries. Some approximate 
methods are available, but are often not acceptable. 
Experimental methods are very expensive and time 
consuming. On the other hand, numerical methods for 
simulating and analyzing electromagnetic (EM) fields have 
become the most effective and powerful tools to help 
engineers visualize and manipulate EM fields and thereby, to 

design products without the extensive testing and redesign 
formerly needed to accommodate unforeseen EM effects. 
 
The numerical treatment of most linear or nonlinear EM 
field problems can be effectively achieved through a 
Boundary Element Method (BEM). As compared with the 
domain-type methods, such as Finite Element Method 
(FEM) or Finite Difference Method (FDM), the BEM has 
two salient advantages: 1) the dimensions of the problem 
are effectively reduced by one; 2) the analysis is equally 
applicable to bounded or unbounded regions. Particularly, 
in the case of analysis of eddy current problems with high 
conductivity and frequency, the strong skin effect makes 
domain-type methods very difficult and expensive to use. 
One must use very fine mesh or grid in the region close to 
the conductor boundary in order to accurately calculate the 
field distribution which attenuates exponentially away from 
the boundary. BEM, in contract to other methods, is ideal 
for this application in that only the material interfaces need 
to be included in the formulation. Then the field distribution 
can be accurately calculated by using the equivalent 
source through a Green’s function. 
 
Recently, a computer program, OERSTED [1], for 
simulating and analyzing two-dimensional or rotational 
symmetric eddy current problems with the steady-state 
sinusoidal time-varying source excitation has been 
developed at the Integrated Engineering Software (IES). 
Like other widely used CAE tools developed at IES, 
OERSTED is a software package based on the most 
advanced BEM technique. The package provides a very 
friendly user interface, exact modelling of material 
boundaries and accurate results. It has the capability of 
calculating the skin and proximity effects, induced current, 
EM fields, Joule loss, impedance, forces and torques. The 
program can handle both linear and nonlinear materials, 
and wide range of frequency including the magnetostatic 
case. 
 
In this paper, a dual simple-layer boundary integral 
equation and its numerical solution are described. Several 
application examples are presented to show the accuracy, 
efficiency and reliability of the program. 
 

INTEGRAL EQUATION FORMULATION 



 

 

 
Consider a two-dimensional conductor of arbitrary cross 
section embedded in free space. For simplicity, we assume 
that the conducting material is linear, isotropic and 
homogeneous. The conductor has a conductivity σ  and 
magnetic permeability µ . In the case of TM polarization where 
current flows in the z direction, the 2D time-harmonic diffusion 
equation in terms of z component magnetic vector potential A 
in the conductor may be written as 
 

sJAK µ−=+∇ )( 22  
(1) 

 
where ωµσjK −=2 , and Js is the source current density. 
For the eddy current problem, Js is an unknown constant [2]. In 
a somewhat unconventional way, we may introduce two 
additional potentials according to [3]: 
 

At – A + As 
(2) 

 
where At represents the total field, and As represents the 
source component which is a gradient field. Similarly, the total 
current density Jt has two components, eddy current Je and 
source current Js,   
 

Jt – Je + Js 
(3) 

 
where 
 

ss AjJ ωσ−=  
(4) 

 
Upon substituting (4) into (1) and using the fact that As is a 
constant in the conductor, we can express the governing 
equation in the conducting region as 
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In free space, the governing equation is  
 

02 =∇ A  
(6) 

 
From the equivalence principle [4], one can show that the 
fields in the two regions may be obtained by using two surface 
current distributions J1 and J2 on the surface S which is the 
interface between the conductor and the air. From (5), the total 
magnetic vector potential in the conducting region can be 
expressed as 
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where r and r’ are the field and source points, respectively. 
And from (6), the reaction potential in free space can be 
written as 
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In above equations, subscripts 1 and 2 denote conducting 
region and air, respectively. The Green’s functions in (7) 
and (8) are, respectively,  
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and 
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In (9), )2(

0H  is the zero order Hankel function of the 
second kind. 
 
By enforcing the A and tangential H continuity conditions 
on the boundary S, one obtains a dual simple-layer 
boundary integral equation as 
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in which n is the normal vector of S, and 
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An additional equation is obtained by enforcing the 
conservation condition 
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where the integration is performed along the conductor 
surface S. Combining (14) with (11) and (12), we can 
obtain the solution for the unknowns J1, J2, and A1

s. Other 
quantities of interest can be easily calculated from these 
values. The integral equation presented here has the 
advantage that no higher-order derivatives of the kernel 



 

 

function are involved. Also, since the fields in a region only 
depend on the surface current distribution on the region 
boundary, considerable computer time may be saved for 
problems with many regions. Another nice feature of this 
formulation is the A1

s is proportional to the voltage drop along 
the conductor. Since the total current in the conductor is 
known, one may use it directly to calculate power loss and line 
impedance. 
 
For the geometry of rotational symmetry where current flows 
only in the ϕ  -direction in the (p, ϕ , z) coordinate system, 

sJρ  is a constant for any given plane at ϕ =constant in a 
conductor [2]. Hence, we may introduce a source component 
magnetic potential ρ/CAs =  where C is a constant. By 
using this potential, one can obtain a boundary integral 
equation similar to that described above in which C may be 
treated as an unknown. 
 
 

IMPLEMENTATION 
 
The above boundary integral equation has been solved by 
using the Galerkin method [5,6]. Boundaries, i.e. the interfaces 
of materials are modelled exactly by using segments (lines, 
arcs, or splines). These segments are then divided into small 
sections which are referred to as boundary elements. The 
equivalent surface current distribution on each element is 
approximated by linear shape function [6]. When these 
discretized currents are used in (11) and (12) and the resulting 
equations tested with the same shape function on each 
element, a set of linear simultaneous equations for the 
unknowns of the surface equivalent current density coefficients 
and the source component potentials is obtained. The system 
of equations is then solved for the coefficients of the expansion 
function. Once the equivalent currents are determined, the 
potential, EM fields and induced currents can be calculated at 
any point by integration of the equivalent currents with the 
Green’s functions. As well, parameters like forces, torques, 
ohmic loss, stored energy, and line impedance are readily 
calculated. 
 
Using OERSTED on a PC or workstation, the geometry, 
material properties (conductivity, permeability, B-H curve for 
nonlinear materials), excitations (impressed current or 
impressed field), and operating frequency can be entered by 
using a keyboard and a mouse/digitizer through a menu-driven 
interface and are immediately displayed. This approach 
minimizes human error and the time required to enter or 
modify a particular problem. User may solve the problem 
interactively or use the BATCH command for unattended 
operation of the program. After the problem is solved, field 
value can be obtained at any desired location throughout the 
entire problem domain. Field distributions can be displayed in 
the form of contour plots, color maps, surface presentations, 
and graphs. Transverse field components can also be 
displayed in the form of arrow plots. The results can be saved 
in a data base for future use, and can also be printed out on 
hard copy. 
 

 
VERIFICATION AND APPLICATIONS 

 
OERSTED has been tested for several simple geometries 
where analytic solutions are available; a circular conductor 
(2D) excited by surface or volume current and a spherical 
conductor (RS) excited by an impressed field. The results 
obtained by using OERSTED are accurate up to 5 digits 
for a wide frequency range. Several tests and applications 
are given below: 
1) A Three-Phase Bus System 
 
The three-phase bus system is shown in Fig. 1. The 
conductors are made of copper tubes 

)/108.5( 7 mSx=σ . The three phase currents are 
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and the operating frequency is 400 Hz. In this problem, 10 
elements have been used on each surface. The calculated 
voltage drops along the conductors are given in Table I as 
compared to the measured values [3]. 
 

 
 
Table I. Voltage Drops Along Conductors 

Methods V1(V/m) V2(V/m) V3V/m) 

Measurement 1.936 1.718 1.860 

OERSTED 1.934 1.697 1.852 

 
One observes an excellent agreement between OERSTED 
and measured results. 
 
2) A Pipe-Type Cable 
 
A pipe-type cable is shown in Fig. 2 which consists of a 
pipe )500,/109077.3 6 == rmSx µσ  and three circular 



 

 

conductors )1,/10406.3 7 == rmSx µσ . The unit of 
dimension is mm. The pipe is treated as the reference 
conductor. As shown in Fig. 2, 89 elements are used to 
approximate the equivalent currents. The impedances 
calculated by using OERSTED are listed in Tables II and III 
where the units for resistances and inductances are 

mm /Ω and mH /µ , respectively. This structure has been 
analyzed in [7] with a FEM, the results presented here are in 
good agreement with those in [7]. 
 

 
 
Table II. Resistances of a Pipe-Type Cable 

f(Hz) R11 R12 R22 R23 

1 0.07288 0.05698 0.07290 0.05697 

10 0.1108 0.0937 0.1117 0.0934 

100 0.3600 0.3202 0.3753 0.3154 

1000 1.194 0.9885 1.419 0.9284 

10000 3.804 2.548 6.595 1.944 

100000 5.731 3.400 12.28 2.190 

 
 
Table III. Inductances of a Pipe-Type Cable 

F(Hz) L11 L12 L22 L23 

1 2.327 1.913 2.441 1.838 

10 1.976 1.569 2.082 1.496 

100 0.8609 0.5059 0.9341 0.4457 

1000 0.4656 0.1630 0.4975 0.1146 

10000 0.3141 0.05355 0.2735 0.02295 

100000 0.2850 0.03770 0.2010 0.01506 

 
 
3) An Induction Heating System 
 
The cross section of right hand side of the load of an 
induction heating system is shown in Fig. 3. This load 
consists of two turns of serially connected copper wire 
(work coil, mSx /108.5 7=σ ) which is in close proximity 
to the heated material (work piece, mSx /1088.3 7=σ ). 
One important consideration in the coil design procedure is 
the impedance of the work coil and work piece which 
should be such as to allow for an efficient flow of energy 
from the source [8]. The system considered here was 
analyzed previously by using a FEM [8]. Three different 
load conditions are analyzed which correspond to the 
cases no heat (f=450 kHz, d=0.015 in), onset of heating 
(f=416 kHz, d=0.045 in) and efficient heating (f=384 kHz, 
d=0.085 in), respectively. The load impedances obtained 
by using OERSTED are shown in Table IV in which the 
units of resistance and inductance are Ω  and Hµ , 
respectively, and they are compared with the results of the 
FEM and measurement [8]. 
 

 
 
Table IV. Impedance of Work Coil-Work Piece 

F(k
Hz) 

D(in) OERSTED 

R        L 

FEM 

R        L 

Measured 

R        L 

450 0.015 0.297, 0.149 0.269, 0.153 0.344, 0.189 

416 0.045 0.222, 0.216 0.202, 0.222 0.249, 0.269 

384 0.085 0.168, 0.282 0.155, 0.289 0.185, 0.343 

 



 

 

Note that there is a quite large discrepancy between the 
computed and measured data. The main reason for this 
difference is that a rectangular work coil instead of a circular 
coil was used in the measurement. The magnetic potential 
contour plots for the above three conditions are given in Figs. 
4-6. 321 elements have been used in analyzing this structure. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
4) A Multilayer Coil 

 
In Fig. 7, we show the cross-section of a multilayer eddy 
current type coil at the symmetry plane. This kink of coil 
can be used to generate AC high magnetic field. Due to 
the eddy current in the cooper cylinder, high field will be 
produced in the hole which is the small area formed by the 
copper cylinder. 125 elements has been employed to 
model the coil, and the contour plot of calculated magnetic 
potential at f-60 Hz is shown in Fig. 8. In this case, a total 
of 1 A current is assigned to each coil and a total of 0 A 
current is enforced in the copper cylinder. The magnetic 
flux density at the center of the hole is 0.15 mT. 
 



 

 

 
 

CONCLUSIONS 
 
A software package, OERSTED©, for simulating 2D/RS eddy 
current problem has been introduced in this paper. The 
boundary integral equation formulation and its numerical 
solution are described. Several application examples are 
presented to show the accuracy, efficiency and reliability of the 
program. 
 
The BEM, combined with a highly interactive graphical user 
interface, makes OERSTED a very effective and powerful tool 
to simulate and analyze eddy current problem. 
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