
A BOUNDARY ELEMENT ANALYSIS OF TEAM PROBLEM NO. 20:
STATIC FORCE CALCULATION

ABSTRACT

Team problem 2D is specially challenging to many field theory codes in that it seeks to determine
the force on a highly saturated rod which is centered inside a magnetic yoke. The magnetic fields
near the edges of this rod are nearly singular in nature: any attempt to predict the forces using the
magnetic fields around the rod, for example, with Maxwell stress tensor, would most likely meet
with failure. Most finite element codes approach the calculation of force using the Coulomb energy
technique [1], wherein the necessary derivatives on the magnetic field energy are taken inside the
variational integrals. The boundary element approach described in this paper seeks yet another
alternative for calculating the force. This boundary element approach attempts to represent the field
both in the air and in the iron regions with a sheet of current on the air iron interface, with additional
volume currents distributed throughout the medium which is saturated. Once the currents are
determined, the magnetic field is computed using Biot-Savart and the forces are computed by
summing the J cross B contributions.
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ABSTRACT – Team problem 2D is specially challenging to 
many field theory codes in that it seeks to determine the 
force on a highly saturated rod which is centered inside a 
magnetic yoke.  The magnetic fields near the edges of this 
rod are nearly singular in nature: any attempt to predict the 
forces using the magnetic fields around the rod, for example, 
with Maxwell stress tensor, would most likely meet with 
failure.  Most finite element codes approach the calculation 
of force using the Coulomb energy technique [1], wherein 
the necessary derivatives on the magnetic field energy are 
taken inside the variational integrals. The boundary element 
approach described in this paper seeks yet another 
alternative for calculating the force. This boundary element 
approach attempts to represent the field both in the air and 
in the iron regions with a sheet of current on the air iron 
interface, with additional volume currents distributed 
throughout the medium which is saturated. Once the 
currents are determined, the magnetic field is computed 
using Biot-Savart and the forces are computed by summing 
the J cross B contributions. 

INTRODUCTION 
Problem #20 has been proposed by Professors Nakata, 
Takahashi and Fujiwara [2],[3].  Among the key features of 
the model are the following:  the flux is three-dimensionally 
distributed, the ampere turns of the coil are more than 
sufficient to saturate the center rod and edges of the yoke, 
and the flux density changes rapidly along the perimeter of 
the central rod on which the force is being investigated.  The 
fields have been accurately measured near the corners of 
this upper rod.  Therefore, it is both the forces and the fields 
which are desired.  Because the problem possesses quarter 
plane symmetry, some advantage in reduction of number of 
unknowns can be realized. 
 Figure 1 shows the problem geometry.  The small center 
pole is forced to carry the flux for both yokes and is easily 
pushed into saturation above 2000 amp-turns excitation.  

The B field is requested along the lines a-b, c-d, Ψ-∃ , 
and o�−γ . 

 
 

 
THEORETICAL DEVELOPMENT 

 
As suggested in the abstract, the objective of this 
boundary element approach is to place unknown 
surface current on all air iron interfaces and seek to 
match the boundary conditions that normal B and 
tangential H be continuous across all such interfaces.  
Once found, all magnetic fields are determined by 
integration using the Biot-Savart law.  Forces are also 

found using the integration of BxJ  contributions. 
Because no derivatives are necessary with such a 
formulation, numerical errors are minimized. Because 
the medium (in this case, the center yoke) is highly 
saturated, additional volume currents are necessary to 
account for magnetization effects inside the iron. The 
contribution to the magnetic field and forces made by 



 

 

these volume currents is also accounted for by integration, 
thus reducing errors from differentiation. 
 
Consider first the boundary element formulation for a non-
saturable problem. It is wise to choose a formulation where 
the normal B field is guaranteed to be continuous. Let the 
magnetic vector potential A be defined as 
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The surface current K is laced over the air iron interface and 
has no normal component. In all of space, both air and iron, 
the B field can be represented as 
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The field B0 represents the impressed magnetic field from all 
other sources. In this case, B0 is found using Biot-Savart with 
the coil that is wrapped around the yoke. Note that the 
unprimed curl operator operates only on the Green’s 
function, but the surface gives the direction operator for the 
curl. It should be clear that (2) automatically enforces the 
condition that the normal B field be continuous. Only the 
condition on tangential H field need be enforced. Recall that 
the Cauchy principal part of (2) is 
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The plus or minus sign will depend on which side of the 
interface the normal is pointing towards. Equation (3) is 
determined by examining the integral,  
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which represents the integration around a hemisphere in the 
limit that the radius of the hemisphere goes to 0. It should be 
clear that the sign is positive if the normal is directed out of 
the region. By using the definitions of permeability, 21,µµ  
and the normal on the inset of Figure 2, it is possible to write 
 

 
 
the expressions for the tangential field both in regions 1 
and 2 as 
 

1

0

1

0

1

0
1

ˆˆ
2

')',(ˆ
µµ

µ
µ
µ BxnKxndSrr

n
GKxnHnx t +−

∂
∂= �  

(5) 
 

2

0

2

0

2

0
2

ˆˆ
2

')',(ˆ
µµ

µ
µ
µ BxnKxndSrr

n
GKxnHnx t ++

∂
∂= �  

(6) 
Equating (5) and (6) yields a single integral equation for 
the unknown fictitious surface current K as 
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It is useful to consider the physical significance of this 
fictitious surface current K that has been developed. In 
the real world, H can only be discontinuous if a surface 
current exists; this boundary condition is written 

fKHxn =ˆ . By analogy it should be clear that this 

fictitious surface current K represents a discontinuity in 
the magnetization or 
 

KMxn =ˆ . 

(8) 
 
In any event, once the surface currents are determined, 
the B field can be computed in post processing easily 
using 
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Note that the permeability multiplying the integral in (9) is 
that of free space. 
 
Because the problem is nonlinear, it is necessary to add 
volume currents in all saturable regions. Actually, these 

volume currents are needed whenever 0≠∇ Mx . Defining 

a magnetization current MxJ m ∇≡  it is possible to obtain 
a modified expression for the computation of the B field as 
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Obviously these volume currents, Jm, are unknown a priori. 
Solution of the problem is as follows: First, assume Jm =0; 
second, compute the B field everywhere; third, check all 

saturable regions to determine whether 0≠∇ Mx ; and 

substitute MxJ m ∇= . The process is then repeated until no 
change in these magnetization currents is witnessed. Under 
relaxation can be utilized to accelerate conversion, with an 
under relaxation parameter of about 0.3. Throughout this 
process the magnetization current is always a source term 
and is treated as known. It is computed after the fact and 
forms a contribution to the right-hand side of the equations 
being solved. 
 
The question immediately arises as to the best method for 
computing the magnetization current, Jm. It is instructive to 
consider first how not to do this. The most straightforward 
way might perhaps be to use equation (10) to compute the 
magnetic field throughout the saturated region. In any local 
region, the B field would be known at 6 points and 3 
orthogonal directions. It is easy to extract the magnetization 
M from the B-H curve for each of these 6 points and perform 
a finite difference approximation to the curl operator for the 
determination of Jm. The amount of error associated with this 
approach is usually quite high. A better approach is to begin 
with the definition of magnetization as 
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The magnetization current would then follow from the curl of 
this expression as 
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The curl of H would be the actual current imposed within the 
steel region; it happens to be equal to 0 for this particular 
problem. If it were not 0, however, one would begin by 

simply multiplying the actual impressed current by the 
relative permeability since the total volume current in 
the region would be equal to Jm plus the real impressed 
current. This is perhaps made clear by expanding the 
terms in (12) as 
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Adding the first term in (13) to the real impressed 
current equates to simply multiplying the original 
impressed current by the relative permeability. It is the 
second term in (13) that is more difficult to handle. By 
explicitly writing the gradient of permeability in terms of 

B∂
∂µ

, it is possible to extract the information necessary 

for the computation of Jm directly from the kernels of the 

integral equation. The term 
B∂

∂µ
 follows directly from 

the B-H curve for the material. The H field needed in 
(13) follows by dividing (10) by the local permeability 
µ , also determined from the B-H curve. The gradient 
term is computed as 
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Thus, the magnetization current is determined at all the 
corners of a subvolume within the magnetization region, 
and interpolation used within the subvolume to 
distribute this magnetization current. It should be further 
noted that each of the Green’s functions in (14) take on 
the direction of the surface current K and magnetization 
J, respectively. 
 
A picture of the subvolumes used in this problem is 
shown in Figure 3. A total of 1,943 were used, 800 
alone for the center pole with 200 crowded into the 
upper section of the center pole. Starting with the 
assignment, Jm=0 everywhere, all the surface currents 
and the magnetic fields associated with them are 
determined at the corners of these subvolumes. After 
the first iteration the magnetization current is computed 
from (13). The process is then repeated. In the second 
iteration, the surface currents are again the unknowns; 
the volume currents are assumed to be those dictated 
by the first iteration. Once the new surface currents are 
found in the second iteration, magnetic fields are  



 

 

 
 
determined throughout the saturable regions and new 
magnetization currents are computed. They are updated 
from the second iteration using the relaxation formula 
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For this problem 2.0=β . The equations are solved for the 
unknown surface current at each iteration using an iterative 
conjugate gradient solver. Convergence criteria for each 
iteration was set to terminate with changes less than 0.3% 
changes. Since quarter plane symmetry was assumed, the 
number of unknowns was only 1,200. The problem was 
worked on an HP Workstation 710 having a 12.2 megaflop 
speed rate, and was solved in roughly 10 hours. 
 
 

RESULTS 
 
The fields and forces were required for 4 different current  
 

 
 
settings of 1,000 – 5,000 amp turns. Shown in Figure 4 is the 
field prediction on line a-b shown compared to the measured 

data. The predicted fields are slightly lower (=10%) than 
the measured data. 
 

 
 
By comparison, the field comparisons on line c-d are 
shown in Figure 5. Again the computed fields are lower 
than the measured data. 
 
In spite of this lower field prediction, the forces were 
quite good. The forces are summarized in Table I. 
 

Table I Fz force Calculations 
 

Amps 

(AT) 

Force (Nt) 

Computed 

F 

measured 

1000 7.61 8.1 

3000 52.41 54.4 

4500 73.65 75.0 

5000 79.38 80.1 

 
The points P1 and P2 are located at the (x,y.z) 
locations (0,0,25.75) and (12.5, 5, 25.75) respectively. 
The results are summarized in Table II. 
 

Table II Bz at points P1 and P2 
 

Amp- 
Turns(At) 

P1 
Computed 

P1 
Measured 

P2 
Computed 

P2 
Measured 

1000 0.303 0.36 0.242 0.24 

3000 0.797 0.84 0.613 0.63 

4500 0.955 0.99 0.694 0.72 

5000 0.993 1.03 0.714 0.74 

 



 

 

The average z component of field density was computed 
along lines βα −  and o�−γ . These positions 
corresponding to (x,y,x) locations (-12.5<x<12.5, -5<y<5, 
z=75) and (38.5<x<63.5, -12.5<y<12.5,z=75) respectively. 
The results are summarized in Table III. 
 

Table III Bz at points P1 and P2 
 

Amp- 
Turns(At) 

Alpha-
beta 

Computed 

Alpha-
Beta 

Measured 

gamma-
delta 

Computed 

Gamma-
delta 

Measured 

1000 0.713 0.72 0.132 0.13 

3000 1.79 1.75 0.357 0.36 

4500 2.01 2.01 0.44 0.43 

5000 2.06 2.05 0.462 0.46 

 
 

CONCLUSIONS 
 
The boundary element method is, indeed, an accurate option 
for solving nonlinear highly saturable magnetic field 
problems such as this. As the degree of saturation 
increasing as it did for the final current setting, the number of 
subvolumes necessary for accurate solution is quite high. In 
this domain it could be argued that the boundary element 
method is similar to a finite element approach in that the 
number of unknowns goes up as the problem density cued. 
However, the number of unknowns remains an n2 type 
problem since it is only the surface currents that are 
determined from a full matrix solution at every iteration. In 
practice it is found that the magnitude of the magnetization 
currents is considerably smaller than the surface currents K 
that were being predicted. Indeed, unless the problem isn’t 
driven considerably into saturation, reasonably accurate 
solutions of 10% or less can be had without any 
subvolumes. One nice feature of the boundary element 
method certainly the fact that forces are computed by 
summing up J cross B terms throughout the problem. 
Summations like this circumvent difficulties of other 
approaches requiring derivative of energy. 
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