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ABSTRACT

Increasingly complex electromagnetic devices require more flexible modelling, and fast and accurate
computation of performance parameters. Although two-dimensional analysis provides good
approximations, often the physics of the problem requires three-dimensional analysis. Using the Boundary
Element Method (BEM) for three-dimensional analysis, now provides unprecedented design opportunities
to engineers. This paper outlines the basis of three-dimensional BEM design and analysis of magnetic
devices, and contrasts 2D/3D design for optimal utilization of 3D. Options to test solution accuracy
are discussed. The torque converter sample problem demonstrates the interactive graphics capabilities,
the efficiency and power of BEM in the analysis of magnetic fields.
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Increasingly complex electromagnetic devices require 
more flexible modelling, and fast and accurate 
computation of performance parameters.  Although two-
dimensional analysis provides good approximations, often 
the physics of the problem requires three-dimensional 
analysis.  Using the Boundary Element Method (BEM) for 
three-dimensional analysis, now provides unprecedented 
design opportunities to engineers.  This paper outlines the 
basis of three-dimensional BEM design and analysis of 
magnetic devices, and contrasts 2D/3D design for optimal 
utilization of 3D.  Options to test solution accuracy are 
discussed. The torque converter sample problem 
demonstrates the interactive graphics capabilities, the 
efficiency and power of BEM in the analysis of magnetic 
fields. 
 
 
 

INTRODUCTION 
 
Two distinct approaches exist for the solution of boundary 
value problems: domain-type and boundary-type. 
 
Domain-type formulation is the direct solution of the 
differential equation governing the field.  The finite 
difference (FDM) and finite element (FEM) methods are 
the two most commonly used direct methods. 
 
In the finite difference approach, the differential operator is 
discretized, utilizing a truncated Taylor series expansion in 
each coordinate direction, and applied at each point of a 
rectilinear grid placed on the problem region.  The method 
usually involves an iterative process. 
 
The finite element method uses a variational technique in 
which the potential is approximated by a sequence of 
functions defined over the entire domain of the problem.  
Relating these approximations to the operator equation 
through minimizing a functional that is proportional to the 
energy of the system yields the nodal values of the 
solution. 
 
The second approach to the solution of boundary value 
problems is the boundary integral equation formulation on 
which the Boundary Element Method (BEM) is based. 
 

For over 20 years,  BEM CAE technology has been used 
extensively in civil, mechanical and nuclear engineering.  
A major area in which it has been employed is the CAE 
design and analysis of microstips, antennas and 
propagation scatterers [2]. 
 
Until recently, largely due to historical reasons and relative 
simplicity of implementation, FEM received the most 
research attention.  The major difficulty in developing BEM 
packages for electrical engineering lay, not in the basic 
theory, but in translating its complexity into programs 
easily used by the design engineer [3,6]. 
 
In the integral equation formulation the potential is not 
solved for directly, but an equivalent source, which would 
sustain the field, is found by forcing it to satisfy prescribed 
boundary and interface conditions under a function which 
relates the location and effect of the source to any point on 
the boundary {4]. 
 
This function, called the Green function or influence 
function, effectively eliminates the need of a finite element 
mesh or a finite difference grid. 
 
The main advantages of this method over the direct 
approach are the reduction of one in problem 
dimensionality, accurate modelling of geometry, 
elimination of differentiation and interpolation to calculate 
potential or its derivatives, precise results due to the 
smoothness of the integral operator and sound means for 
checking the accuracy of the solution [5, 7]. 
 
 

BOUNDARY ELEMENT METHOD 
 
To solve the magnetostatic field equations, in integral 
form, the boundary element method is applied.  For linear 
problems the unknowns are only required on the surfaces 
where the permeability on either side is different, or on 
surfaces of permanent magnets.  The number of 
unknowns is thus relatively small as compared to domain 
methods (such as finite difference or finite elements) 
where the entire volume must be discretized. 
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The approach taken is to approximate the permeable 
materials and permanent magnets by an equivalent 
surface current.  To accomplish this, the surface currents 
must be approximated by a set of basis functions.  The 
coefficients of the basis functions are then determined by 
the weighted residual method which enforces the 
boundary conditions on B at the interface. 
 
Linear basis functions were chosen to model the 
equivalent current; however, others could have been used.  
Upon discretization we wish to construct a system of 
equations 
 

(1) 
 
 
where KKKK’ is a vector of unknown coefficients, J is the 
vector of source terms, and S is the system matrix.  The 
elements of the S matrix and J vector were calculated by 
Galerkin’s method [5]. 
 
The system of equation is then solved for the coefficients 
of the expansion functions.  Once the equivalent currents 
are determined, the potential or the magnetic field can be 
calculated at any point by integration of the equivalent 
currents with the Green function.  As well, parameters 
such as forces, torques and inductances are readily 
calculated. 
 
For nonlinear problems, the permeability is a function of 
the B field.  Thus the problem must be solved repeatedly 
until convergence in material properties has been 
achieved [9].  In addition, the nonlinear materials may 
have to be subdivide into subvolumes where an equivalent 
volume magnetization is calculated. 
 
 

(2) 
 
 
The unknown volume currents are not calculated as part 
of the system matrix but are iterated on until a stable value 
is reached and the result put in the right hand side of (1).  
Thus the equivalent volume magnetization occurs as 
unknowns in the right hand side rather than in the system 
matrix, as is the case with volume integral formulations.  
For many problems the effect of the volume magnetization 
is small and can be neglected.  Practically the effect of 
volume magnetization is only noticeable in volumes where 
the field is rapidly changing from a saturated to 
unsaturated state. 
 
Subvolumes often have a small effect on the total field and 
in such cases they can be neglected. 
 
From a practical viewpoint the most attractive feature of 
the BEM is that open region problems are catered to 
inherently [8].  When using domain methods one must 
attempt to generate three–dimensional meshes to some 
arbitrary distance where a boundary condition is assumed.  
For many applications this can in practice be impossible. 
 

MAGNETIC FIELD EQUATIONS 
 
For the magnetostatic field we seek the solution of the 
vector potential due to source currents such that: 
 

 
(3) 

 
The magnetic vector potential due to an arbitrarily oriented 
surface current density is 
 

(4) 
 
 
 
The calculation of the magnetic vector potential in free 
space requires the integration over all current sources. 
 
If regions of different permeability are present, their effects 
can be accounted for by an equivalent current or 
magnetization [1].  That is, the vector potential due to a 
homogeneous magnetized body is identical to the surface 
currents whose density is 
 

(5) 
 
 
The contribution to the magnetic vector potential due to an 
equivalent magnetization current on the boundary is: 
 

(6) 
 
 
 
To determine K, the interface equation for the continuity of 
the tangential component of the field intensity is enforced 
 

(7) 
or 
 

(8) 
 
 
Substituting (3) into (8) for B yields a second kind 
Fredholm integral equation in terms of K.  This equation 
can be solved for K and subsequently A can be calculated 
anywhere by addition of (4) and (6). 

SOLUTION ACCURACY and VERIFICATION 
 
The accuracy of the solution using the BEM depends upon 
a number of factors.  The three most important factors are 
how well the integrations are performed, the number of 
boundary elements used and the placement of the 
elements.  The first is dependent only on how well the 
programmer of the software can achieve a desired 
accuracy of integration within a specified computation 
time.  By taking longer to perform integrations fewer 
elements may be required for some problems.  As 
techniques evolve to achieve greater integration accuracy 
within a specified time, this problem is expected to 
become inconsequential. 
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The location and number of boundary elements is 
currently the responsibility of the person using the 
software.  More elements are required on surfaces in  
close proximity to other surfaces.  As well, the more rapid 
the field variation the more elements are required. 
 
To test if the element distribution is adequate some basic 
checks can be applied.  The simplest is increasing the 
element density and checking if the solution changes 
significantly.  Significant changes indicate that more 
elements may be required.  Ampere’s circuital law can be 
applied over a variety of closed paths to verify the solution 
as well. 
 
Future work will be directed at finding surface locations 
where element density is not adequate.  Improvements to 
the element density can subsequently be made by the 
user or eventually by the software itself. 
 

MICROCOMPUTER IMPLEMENTATION 
 
The 640kb barrier on RAM has been limiting the use of 
PC-type micro computers for implementing 3-D 
electromagnetic software.  Now, with the extended 
memory feature in micros, the size of the software used 
can be practically as large as the user wishes.  In addition 
to large memory requirement, computation speed is 
equally important to 3-D field problems.  The new micros, 
with special math co-processors, offer speed comparable 
to that of a mainframe.  Therefore, the sophistication of 
solving a 3-D problem is limited only by the scope of the 
software used. 
 
A 3-D magnetic field problem is described by defining the 
geometry, material properties, and sources.  Identification 
of the direction of the sources in 2-D is trivial, whereas in 
3-D, an intelligent algorithm is essential to reduce the 
volume of input data required.  Also, displaying 3-D 
objects on a 2-D screen requires special expertise. 
 
The simulation of fields on micro computers require the 
input of the above, the numerical solution of the field 
equation, and output of the desired parameters.  The 
process is repeated until optimum values for the design 
parameters are obtained.  The efficiency of the procedure 
is measured by the amount of time required to complete 
the design.  The factors that affect the efficiency are the 
ease of use, the accuracy of results and the capabilities 
and speed of the program.  Of all these factors, perhaps 
ease of use is the most significant because of the 
complexity of viewing/handling the parameters of a 3-D 
problem.  In a boundary element package discretizing 
media interfaces is sufficient, unlike the need of a 3-D 
mesh in the entire region of the problem for a finite 
element analysis.  This is by far the biggest simplification 
and hence the time saver. 
 
Ease of use is not a concept totally isolated form the 
numerical technique used.  There are a number of 
important factors  contributing to the ease of use which are 
brought about by the solution technique used in the 
package. 
 

 
The user interface in AMPERES was designed to require 
minimal keyboard entry and hand motion.  Menus are 
structured to follow the natural pattern of defining and 
solving a problem and to incorporate the same sets of 
commands that operate on different objects.  On-line help 
is provided in every menu. 
 
A great majority of problem defining parameters can be 
entered with the help of a mouse and immediately 
displayed.  This approach minimizes human efforts and 
error, and the time required to modify a particular problem. 
 
The special features of the micro computer environment 
(eg. fast colour graphics, colour printer, mouse or 
keyboard entry, math co-processor, hard disk, RAM disk) 
are fully utilized to integrate problem definition, analysis, 
data storage, drafting and presentation capabilities. 

A SAMPLE ANALYSIS 
 
In this section, a sample problem is presented using 
AMPERES on an IBM PC-type micro computer.  The 
results obtained are compared with the measured value. 
 
The example is the magnetic clutch illustrated in Fig. 1.  
The device consists of two distinctly separated parts – 
rotor and stator.  A steel cylindrical core with 10 
permanent magnets attached to it forms the rotor. 
 
 

 
 

Stator is also constituted by 10 magnets internal to a steel 
core.  Dimensions of the device and the directions of the 
permanent magnets are shown in Fig. 2 
 



 

 

 
 
Often 3-D objects displayed on a 2D screen deceive the 
user’s vision.  This inconvenience can be minimized in 
AMPERES by modelling the problem in parts, and then 
merging them to obtain the total problem.  Therefore, in 
the present example, rotor and stator are modeled 
separately, and merged later. 
 
The problem is modeled by entering the geometry, 
nonlinear B-H curves for the steel and permanent 
magnets, and the magnetization of the permanent 
magnets.  Boundary elements are then discreetly placed 
on the surfaces where they are required.  If a problem 
consists of volume currents, then sub-volumes have to be 
generated in the current carrying volumes. 
 
The geometry of the magnetic clutch is given in inches.  
This can be chosen to be the system of units for data entry 
and result output.  The program permits selection of 
various systems of units, including the user’s own. 
 
After the selection of the proper unit system and the real 
number range in cartesian coordinates, the geometry of 
the problem is entered.  This is done through the 
geometric modeller, which is an integral part of the 
program.  Either the keyboard or the mouse or a digitizer 
can be used for this purpose. 
 
The geometric modeller provides commands for creating, 
modifying and inquiring about the geometry.  Using these 
commands, 3 types of geometric items – segments, 
surfaces and volumes can be generated.  Surfaces are 
defined by either 3 or 4 closely connected segments and 
volumes by surfaces.  However, boundary elements can 
be generated only on 4 sided surfaces, and sub-volumes 
only in 6 surfaced volumes. 
 
First a primary 36º section of rotor is modeled, as shown in 
Fig. 3.  This is best achieved in a small window.  Then the 
rotor in full is generated by rotating and duplicating the 
primary block. Before creating the complete rotor 
assembly, the material properties, boundary elements and 
magnetization direction are assigned to the primary rotor 
block. 
 
 
 
 
 

 
 
The type of steel used for the rotor and stator cores is 
“MalFe”, and the permanent magnet material is “R5”.  The 
normalized B-H curves, provided by the manufacturer, of 
these two materials have to be generated first for defining 
the material properties. AMPERES is supplied with a 
default table of 13 materials, as shown in Fig. 4. 
 

 
 
Each non-linear material is associated with a default B-H 
curve, which can be modified by the user.  In AMPERES, 
2 to 20 points define a normalized b-H curve. 
 
For the “MalFe” material 12 points were extracted from the 
manufacturer’s curve.  The points in the form (H(Oersted), 
B(Tesla)) are as follow:  (0,0), (2,0.3), (4,0.85), (8,1.25), 
(10,1.351), (20,1.502), (40,1.654), (80,1.758), 
(199.8,1.89), (1508,2.19), (4901,2.575), and (4995,2.58).  
The curve then appears as in Fig. 5. 
 
Magnets are defined by entering their second quadrant or 
demagnetization curve.  The next step is to assign these 
materials to the volumes of the primary rotor block by 
selecting them from the menu and locating the cursor in 
the desire volume. Additional requirement for magnetic 
material regions is magnetization direction identification.  
Direction numbers (0,0,1) are assigned to the magnet in 
the primary block. 
 



 

 

 
 
The most crucial part to solving the problem accurately is 
the generation of boundary elements.  Boundary elements 
are generated only on surfaces carrying currents and 
surfaces between dissimilar media, or magnets with 
dissimilar magnetization.  The element configuration used 
for the primary rotor block is shown in Fig. 6 
 

 
 
Two core surfaces that are parallel to X-axis have not 
been discretized because they would become interfaces 
between similar media after rotating and duplicating the 
primary block. 
 
In AMPERES a geometry can be duplicated with all its 
attributes including elements, media, magnet directions, 
currents, etc..  In Fig. 7, attributes that can be chosen to 
be copied along with the geometry are listed. 
 

 
 
After setting the copy enable flags of elements, media to 
“y(yes)” the primary rotor block is rotated by 36º and 
duplicated as shown in Fig. 8. 
 

 
 
Now the permanent magnet of the newly generated rotor 
section has to be assigned with direction numbers 
(0,sin36º,-cos36º).  Creating 8 more similar sections at an 
interval of 36º completes the rotor assembly, shown in Fig 9. 
 

 
 
Every time a new section is created, appropriate direction 
numbers have to be assigned to the magnet of the 
individual rotor section.  This completed part of the device 
is saved in a database file called “rotor”. 
 



 

 

The stator is constructed using the same method.  The 
primary stator block, shown in Fig. 10, is used to obtain 
the complete stator assembly shown in Fig. 11. 
 

 
 

 
 
The stator information is saved to a file called “stator”.  
Merging the two database files “rotor” and “stator” 
produces the magnetic clutch device shown in Fig. 12.  
The total number of boundary elements used in this 
problem is 800. Now the problem is ready to be solved. 
 

 
 
 
After the solution is obtained, various parameters can be 
calculated.  The torque about the axis of the device has 

been calculated to be 177.07 lbs x inch.  The measured 
torque value in 162 lbs x inch.  The difference between the 
calculated and the measured values is less than 10%. 
 
At first glance, one may think that a 2-D analysis of this 
problem could provide reasonable results.  To verify this 
hypothesis, the same problem was solved by our 2-D 
software MAGNETO which is also based on the Boundary 
Element Method.  The torque obtained with MAGNETO for 
the device height (1.25 inch) is 317 lbs x inch, which is 
almost twice the measured value.  Clearly, a 3-D analysis 
is required to accurately model the problem. 
 
In AMPERES an arrow plot of the B-field can be 
calculated on any selected surface of the geometry or on 
any arbitrary plane.  Fig. 13 shows the arrow plot on the 
plane bisecting the device in the x-direction with the 
geometry masked. 
 

 
 
Graphs of vector magnetic potential and B-field can be 
obtained along any arbitrary line or curved segment or 
along a curve generated between any two points on a 
selected surface. The other important feature in 
AMPERES is the calculation of constant potential/field 
contours on multiple selected surfaces or on any arbitrary 
plane. Any other information for different rotor position can 
be obtained quite efficiently by using the batch option.  
Many what-if cases can be analyzed unattended. 
 

CONCLUSIONS 
 
The boundary element technique, applied to magnetic field 
problems, has some unique advantages as compared to 
more traditional domain methods such as finite element or 
finite difference techniques.  A major advantage of the 
BEM is that open region problems are handled without 
artificially truncating the problem.  As well, the integral 
formulation is used and unknowns are only required on the 
surface, except where nonlinear materials are rapidly 
changing from an unsaturated to saturated state.  
Subvolumes may be required in such cases to improve 
solution accuracy. 
 
 
 



 

 

The number of unknowns required is relatively small.  
However, boundary element techniques typically generate 
large dense matrices.  In order to solve these matrices 
iterative solvers with fast disk caching techniques are 
required.  These techniques enable the solution of 3D 
problems on powerful personal computers such as the 
Intel 80486 line. 
 
Calculations of the magnetic field, magnetic vector 
potential, forces, or torque requires integrating the 
equivalent unknowns with the appropriate Green function.  
Provided the integrations are handled property, the 
resulting calculations are very accurate due to the 
smoothing effect of the integral operator. 
 
Data input is inherently straightforward due to the reasons 
mentioned above; unknowns are located only on 
boundaries and there is no need to generate a volumetric 
mesh in the unbounded region. 
 
For most practical problems, ease of the initial problem 
specification is secondary to subsequent modifications.  
For example, assume the torque is required for a motor 
with the rotor position varying with respect to the stator.  
After the solution is obtained for one position, the rotor can 
then be rotated to a new position without regenerating a 
new mesh. A finite element solution would require 
generating a new mesh in the air gap between the stator 
and rotor for each new position. 
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