
Simulation of Nonlinear Magnetic Devices Using
Boundary Element Method Based Software Tools

INTRODUCTION

The Boundary Element Method (BEM) is a well-established numerical method for simulation of
physical phenomena including structural, fluid flow and heat transfer analysis. It is particularly
interesting in electromagnetics because of its handling of open region problems and its accuracy
in computing the fields where gradients are high. Classical BEM, however, does not inherently
contain a facility for dealing with regions with inhomogeneous material properties such as those
exhibited by realistic magnetic materials. Furthermore, the concept of a reliable and meaningful
error calculation is not as well established as it is with the more common Finite Element Method
(FEM). This paper outlines a method for handling the effects of material nonlinearity in magnetics
problems. A meaningful way of calculating the error in discrete parts of the model is also presented.
Finally, the approach is verified through the comparison of results from a commercial BEM package
to an analytic case.
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Introduction 
 
The Boundary Element Method (BEM) is a well-established numerical method for simulation of physical 
phenomena including structural, fluid flow and heat transfer analysis. It is particularly interesting in 
electromagnetics because of its handling of open region problems and its accuracy in computing the fields 
where gradients are high. Classical BEM, however, does not inherently contain a facility for dealing with 
regions with inhomogeneous material properties such as those exhibited by realistic magnetic materials. 
Furthermore, the concept of a reliable and meaningful error calculation is not as well established as it is 
with the more common Finite Element Method (FEM). This paper outlines a method for handling the 
effects of material nonlinearity in magnetics problems. A meaningful way of calculating the error in 
discrete parts of the model is also presented. Finally, the approach is verified through the comparison of 
results from a commercial BEM package to an analytic case. 
 
Boundary Element Method 
 
The Boundary Element Method (BEM) is a numerical method used in the solution of boundary value 
problems. In static magnetics we define a magnetic vector potential, A

�

, as: 
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where B

�

is the magnetic flux density. The magnetic vector potential due to an arbitrarily oriented current is 
calculated by [1]: 
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where K

�

is the real and equivalent current density on the boundaries, S , J
�

is the real and equivalent 
current density through the volumes, V , and G is the free space Green’s function: 
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for two-dimensional formulations, and: 
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in three-dimensions. 
 
Finally, B

�

will be calculated by: 
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The continuity of the normal B-field is satisfied everywhere using this equation, but the tangential H-field 
must be satisfied as part of the numerical method. That is: 
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In the BEM scheme, boundaries where the magnetic properties of materials change are divided into 
boundary elements, and the regions containing volume sources such as currents are subdivided into smaller 
regions called sub-areas (figure 1).  The elements separating regions with different material properties are 
then assigned equivalent currents such that the above boundary condition is satisfied given the field 
equation for B

�

. 
 
 

 
Figure 1: Division of interfaces into boundary elements and regions with real current into sub-areas 

 
Nonlinear Materials 
 
The reality in magnetics problems is that materials used are highly nonlinear in nature. Historically, this has 
proven difficult for BEM solvers. Because material effects are normally accounted for at the boundary, the 
nonlinearity and hence the non-homogeneity inside of regions containing magnetic materials cannot fully be 
calculated by elements on material interfaces alone. This is especially true when the field at various points 
inside the region forces the material to operate at various levels of magnetic saturation.  
 
One method that has proven very useful for calculating effects of internal nonlinearity is the application of 
equivalent currents throughout the volume of the nonlinear regions [2]. The fundamental equation to be 
satisfied in the process is: 
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Using this concept, the region containing the nonlinear magnetic material is then subdivided in the same 
manner as the regions containing real volume sources (figure 2). On each of these sub-areas, an equivalent 
volume current is applied such that over each sub-area: 
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Figure 2: Division of nonlinear regions into sub-areas 

 
The solution of nonlinear problems consists of an iterative process to determine the proper value of the 
permeability to use at each element on the boundary and to determine what value of equivalent volume 
current should be used at discrete points in the region of nonlinearity. The iterative scheme used here 
consists of the following steps: 
 

Use the previous field solution to calculate the permeability at each element – in the first step, there 
is zero field and thus the initial permeability of the material curve is used. 
 
Use the previous field solution to determine the equivalent volume current in each sub-area.  
 
Use the new values of the permeability at each boundary element and the equivalent volume current 
to find a new field solution. 
 
Repeat the previous steps until the change in the total solution is less than some prescribed value 
from one iteration to the next. That is: 
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where i represents the current step in the iterative process and ε is the user defined exit criterion. 

  
Another important consideration in the practical solution of nonlinear problems is the updating of material 
information at the boundaries. Each step of the process uses the previous solution to calculate the fields and 
then locate the operating point on the B-H curve for each discrete element. As the process can, in some 
steps, calculate unrealistically high values of the field, a method must be used which brings the calculated 
field values into a more realistic regime. A good candidate for this process is described by Rikabi [3]. At 
each step, the field is damped to represent a more logical operating point on the curve using the diagram in 
figure 3. The previous value of the permeability is used to calculate the effective value of the H-field, and 
then the damped value of B is found by locating the B value on the curve at the new H value. 
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Figure 3: Calculation of the damped B-field from the previous value of the effective permeability and the 
newly calculated B-field 

 
Unfortunately, this process can be non-convergent when the desired exit criterion is very small. In these 
cases, however, the damping scheme may be terminated at some point and a more traditional method for 
updating the boundary permeability can be adopted. That is: 
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where |)(| j

iBf  is the permeability on the jth element during the ith iteration as calculated from the B-H 

curve given the B-field magnitude, || j
iB , and α is a relaxation factor, usually 0.5<α <1.0.  

 
Error Calculation and Element Self-Adaptation 
 
Most designers of magnetic devices have no interest in becoming experts in analysis methods such as BEM 
and FEM. For this reason, it is important for an analysis package to provide meaningful insight to the user 
as to where the model can be improved. It is especially useful if the package can pick out the largest error, 
refine the element discretisation and re-solve the model, repeating this until an acceptable level of error has 
been achieved. This second concept is often referred to as self-adaptation. Two bases for a good self-
adaptation algorithm are the ability to calculate the error on discrete parts of the model in a meaningful way, 
and a parameter to use in deciding when the model has been refined enough to call the error level 
acceptable.  
 
When the above-described method of solving nonlinear models is used, the error calculation must place a 
similar importance on the calculation of boundary elements as on the regional elements (called sub-areas). 
As the solution for both the boundary elements and sub-areas are the equivalent currents, a context in which 
the error is related to the equivalent current either on the boundary or inside of the nonlinear material would 
be suitable. Both of these types of error can be calculated from the adherence to fundamental boundary 
conditions or field equations [4].  
 
The BEM is an error minimization method in the integral sense. That is to say, the continuity of tangential 
H is satisfied over each boundary element: 
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However, this is not to say that everywhere on the element H tangential continuity is satisfied. That is: 
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This fact can be used to define an error density term over each element: 
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Finally: 
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expresses the total error on the element, i, as a total current in units of Amperes. 
 
Similarly, the numerical method used to compute the equivalent volume currents due to material 
nonlinearity enforces curl of H in an integral sense. That is, on each sub-area: 
 

dvHdvJ
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but: 
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This allows the definition of the error over each sub-area: 
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which is once again the error expressed as a total current. 
 
The choice of a parameter for the decision to end the refinement process could be based on the solution 
from one refinement to the next. For example, a user may wish to know that the calculated magnetic force 
on a piece of the model does not change by some specific factor from one refinement to the next. The 
current method compares the total element and sub-area solution to the total element and sub-area error to 
obtain an error measure: 
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The process is terminated when the value of ε reaches some prescribed value. 
  
Comparison to Analytic Models 
 
A simple analytic model is used to confirm the accuracy of the method for solving models with nonlinear 
materials and to confirm the validity of error calculation and self-adaptive scheme. Consider a coaxial 
system as shown in figure 4. The center region is a conductor carrying current, I. The outer shell is a 
nonlinear material with B-H curve as shown in figure 2. Due to the symmetry of the problem, the magnetic 
field is easily computed as a function of the distance from the center of the conductor as: 

 
rIH πφ 2/=  

 
This is a non-trivial problem for two reasons. Firstly, if the material properties change significantly through 
the region, their effect cannot be fully accounted for at the boundaries, as previously noted. Secondly, since 
there is no air gap in the problem, all of the reluctance in the magnetic circuit occurs in the region 
containing the nonlinear material and therefore, the proper modeling of the nonlinear curve is essential.  
 



 
 

Figure 4: Geometry of the analytic model used 
 

 
 

Figure 5: B-H curve for the nonlinear material 
 
At low current levels, the material is operating in the linear regime of the curve and therefore discretisation 
of the region is not necessary. Similarly, when the current level is extremely high and the material is 
completely magnetically saturated, the effective permeability is approximately unity and there is no need 
for discretising the region. Figure 6 shows the analytic and calculated H-field as a function of distance, r, 
along with the relative absolute error in the calculation at each point. Both of these cases are easily solved 
with a minimal number of boundary elements and the solution time is literally a few seconds. 
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Figure 6: Comparison with analytic results for extremely low and extremely high current 
 
When the material is partially saturated, however, different parts of the model are operating in different 
regimes of the curve and therefore the requirement for discretisation of the interior of the region begins. 
Figure 7 compares the analytic result above with a model using three different region discretisation 
schemes, 0, 232, and 1008 sub-areas in the nonlinear region. For each model the same boundary element 
division scheme is used and is the same as that used for the high and low current cases. 
 

 
 

Figure 7: Comparison of analytic result to computed result with varying number of sub-areas 
 
Of course, the denser the region discretisation, the more expensive the calculation becomes and therefore, 
the need for a non-uniform mesh that is concentrated only on areas where it is required becomes important. 
Furthermore, because the sub-areas dominate the solution inside the region, but have reduced effect on the 
field calculated outside of the nonlinear region, the boundary elements must also be refined. Notice that 
even for the 1008 sub-area case, error is still relatively high near the end of the plot, which is just outside of 
the region. To this end, a self-adaptation scheme will refine sub-areas only where needed and additionally 
add boundary elements to the boundaries where a refinement is required.  
 
The error calculation and self-adaptation scheme described above is then used for the same model with 
varying exit criteria. Results from this series are shown in figure 8. 
 



 
 

Figure 8: Comparison of analytic result to computed result with varying self-adaptive exit criteria 
 
Total solution times, as well as total number of elements and sub-areas, are given for each exit criteria in 
table 1. 
 

Exit Criteria # of Elements # of Sub-areas Solution Time 
(seconds) 

0.02 45 76 15 

0.01 109 293 55 

0.005 278 1276 330 

 
 

Table 1: Number of elements, number of sub-areas and solution time for each exit criteria 
 
Conclusions 
 
A method for resolving volumetric effects of nonlinear materials using the boundary element method is 
outlined. The nonlinear method is strengthened by a meaningful way of calculating the error in the model, 
deciding where to refine the model and deciding when to exit. The method produces near analytic results 
for problems in which regions containing nonlinear materials are not saturated at all, problems in which the 
regions are fully magnetically saturated and problems in which there is partial magnetic saturation of a 
region.  
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