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ABSTRACT 

Boundary element method is used for the purpose of ray tracing of charged particles. The results presented here are based on a 
commercially available package; Lorentz, by Integrated Engineering Software; a.k.a. Enginia Research Inc. First, a brief 
description of different numerical methods is presented, followed by some known theoretical examples. In all cases, excellent 
agreement between the theoretical results and the numerical ones is observed. Several of the examples deal with the space 
charge issue. Child’s law and Langmuir-Blodgett’s are used to verify these results. Also an example, 743 Test, of launching a 
particle close to a field discontinuity is presented to show the power of BEM method when it comes to dealing with extreme 
ratios in the dimensionality ( 610> ) within a device. 
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NUMERICAL METHODS 
Most of the industrial packages are based on one of the three classes of numerical techniques: 

1. FDM (Finite Difference Method) 
2. FEM (Finite Element Method) 
3. BEM (Boundary Element Method) 

FDM is based on utilizing a truncated Taylor series expansion in each coordinate direction. Using this expansion, the 
differential operator is discretized at each point of a rectangular grid covering the entire region of interest. The biggest 
advantage of this method is its ease of implementation since the differential operators are easily modeled without much 
preprocessing. Of course, the trade off is paid in less accuracy and speed and poor modeling of the boundaries compared to the 
other two methods. 
FEM uses a variational formulation over a region covered with non-overlapped and non-separated subareas of some prescribed 
shape, which are termed elements. The variational quantity to be minimized is the total electrostatic or magnetostatic energy 
stored in a region. Element geometries and unknowns are expressed by polynomials with nodal values as coefficients. Relating 
these approximations to the operator equation through minimizing the energy functional yields the solution at the nodes. Even 
though, this method is considered superior to FDM, but still suffers from some drawbacks. Among them are: 
• FEM is geared to solve electric and magnetic potentials. Since in direct ray tracing, the knowledge of the values of electric 

and/or magnetic field is required, these values have to be extracted by applying some kind of numerical derivative operator 
to the FEM solution. And numerical derivate operators are very sensitive to numerical, truncation and round off, errors. 

• In order to limit the number of triangular elements, simulation space has to be truncated somewhere. Even though, many 
different schemes have been proposed to deal with this issue, nevertheless, dealing with open region problems has always 
been a concern for FEM methods. 

• For problems involving several orders of magnitude of difference between its smallest and largest details (~ 610 ), such as 
Fowler-Nordheim field emission guns, the FEM triangular elements have to start with extremely small triangles and 
gradually adapt themselves to much larger triangles. This will increase the number of unknowns substantially. 

BEM, on the other hand, solves for the charge distribution on the boundaries of the structure. Knowing these charges, the 
potential and field can be directly computed everywhere in space. Following are the highlights of this method: 
• It is based on an integral formulation, which is numerically a more favorable approach than discretizing a differential 

operator. 
• Elements are one-dimensional entities placed only on the boundaries of the structure. This will reduce the dimensionality 

of the problem by one, compared to FDM and FEM. It also makes the modeling of the problem easier and more user 
friendly. The trade off here is that the matrices generated by BEM are usually smaller and denser matrices, while the other 
two methods tend to generate larger and sparse matrices. 

• Dealing with open region problems is inherently easier with BEM, since elements are only placed on the physical 
boundaries. 

• In problems when extreme ratios exist between smallest and largest details of the structure, BEM will be the method of 
choice. Usually, in these problems the segment with the smallest detail (the tip of a field emission gun) sits at an 
electrically isolated segment from the body of the structure. Therefore, the element distribution at the tip can be fine-tuned 
independent of the element distribution everywhere else. 

• Finally, since field and potential everywhere in space are being computed from the actual charge distribution on the 
boundaries, it will result in extremely accurate results when this method is applied to particle ray tracing. 



 
BOUNDARY ELEMENT METHOD 

 
Starting from Laplace’s equation: 

02 =Φ∇  [1] 

For two-dimensional case, the following Green’s function can be derived: 
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There are three types of boundary conditions that may be encountered: 
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Knowing the boundary conditions, the objective of the analysis would be computing the σ  distribution, such that it will satisfy 
the three types of boundary conditions. In general we can relate potential Φ  to charge density distribution, σ  through an 
integral operator L: 

Φ=σL  [7] 
This operator equation can in turn be solved by Galerkin’s method of moments [1]. 

ORBIT EXAMPLES (NO SPACE CHARGE) 
743 Test 
The 743 Test is one of the most stringent tests that illustrates the strength and accuracy of LORENTZ in calculating the field 
values as well as particle trajectories (Figure 1). It is highly doubted that any other finite element based package can pass this 
test as successfully. The test begins with two coplanar semi-infinite plates charged to equal and opposite potentials. A repelled 
electron is released from one plate (left) at a distance “1” (one) unit of distance from the joint of the plates (zero gap) and 
should land at a distance of “743” on the other plate (right). 

 
(a) 

 
(b) 

Figure 1: (a) The layout of 743 Test (b) The boundary element distribution 

In such a structure, the analytic form for the potential is easily obtained by solving the Laplace’s equation in polar coordinate 
system as: 
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 and consequently, 

the equations of the motion can be solved numerically. This proves “743” as the impact point of the particle with the right 
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plane. In numerical simulation and also in practice, it is impossible for two segments of different potentials to touch each other. 
Therefore, during the simulation, a distance of 6102 −×  unit length separates the segments. The result of this simulation is 
presented in Figure 2 and Table 1. 
 

 
Figure 2: The result of 743 Test simulation depicting both the equipotential lines and the electron trajectory. 

 
 Landing 

X-coordinate 
Error 

Lorentz-2D 741 
Semi-Analytic 743 0.27% 

Table 1: 743 Test simulation result. 



Classical versus relativistic orbits 
In this section, several examples of different types of orbits of an electron around a positive nucleus are being presented. Using 
Gauss’s law, the electric field of an infinite cylinder carrying a charge density of Lρ  can be derived as: 
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The following relationship must hold for a circular orbit to exist: 
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In which rE and eE  are the radial electric field resultant from the nucleus and the electron’s energy respectively. By 

substituting rE  from the first equation into the second one and assuming 1=Lρ : 
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As shown, the launching energy for establishing a circular orbit around a surface charge of 1 [C/m] is 9 [GeV] and it is 
independent of the radius of the orbit (circular color trajectory in Figure 3:a). In this example, launching an electron with 9 
GeV of energy using Newtonian classical mechanics can only serve an educational purpose. Normally, at these energy levels, 
Lorentz-2D algorithm switch has to be set to “Einstein” mode (the default). After doing that, another particle with the same 
9GeV is launched. Not surprisingly, this second particle did not follow the same circular orbit (moving circle trajectory in 
Figure 3:a). The reason is simply the fact that our earlier analysis was based on classical mechanics, assuming that the particle 
mass was an invariant parameter. In order to get back a circular orbit, the analysis has to be revised to account for relativistic 
effects. For a circular orbit at relativistic speeds, we have: 
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It can be easily shown that for a particle to satisfy this last equation for 1=Lρ , the value of β  should be higher than one; i.e. 
velocities higher than the speed of light, which is impossible. Now, let us assume we want to have a circular orbit for an 
electron traveling at 90% speed of light; i.e. 9.0=β . Solving for Lρ  from the last equation results: 

m
C

L
µρ 82768829.52=  [15] 

It has to be pointed out that the reason that the circular orbit is a bit think (Figure 3(b)), is just a display artifact and has nothing 
to do with the accuracy of the results. Lorentz-2D returns a set of computed points as a result of its ODE solver. In order to 
give the visual impression of a continuous motion in space, these discrete points are simply connected together using straight 
lines. Therefore, only the end points of each line segment represent the actual computed points with the accuracy of 1 part per 
million; i.e. 0.0001%. 



  
(a) (b) 

Figure 3: (a) Circular orbit of a 9 GeV electron around a m
C1 nucleus using Classical mechanics and the moving circular 

orbit of the same particle analyzed using relativistic mechanics. (b) Circular orbit of the same particle can again be 

achieved by reducing the nucleus charge to 
m
Cµ82768829.52 . 

Conic sections using Runge-Kutta and Bulirsch-Stoer methods 
In this section, the results for some conic section orbits are presented. In order to further test the capabilities of the package, 
two different types of the adaptive ODE solvers in Lorentz-2D have been used (Figure 4a and b). In these examples, a charge 
of m

Cµ01.0 is setup as the nucleus. To get different conic sections, an electron with constant energy of 8.987713eV  is 
being launched with different distances from the nucleus. The nucleus is located at (0,0) and the particles are launched from 
(0,5), (0,9), (0,10) to traverse a circular, elliptic and parabolic section, respectively (Figure 4c). In all cases, the error less than 

510−  or 0.001% is achieved. 
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Figure 4: (a) Comparison of the trajectories of two identical particles analyzed using RK5 (smooth line) and Broken 
Bulirsch-Stoer method (broken line), (b) Error of RK5 vs. BS (parts per million) (c) Conic sections  



CHILD’S LAW 
It was Child who first conducted the analysis of a one-dimensional electron flow in saturation regime in 1911. He basically 
obtained the solution to Poisson’s equation: 
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 at 0=z . For the one-dimensional 

flow in the z-direction, the Poisson’s equation can be rewritten as: 
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assumed to be valid everywhere. Under these conditions, Child found the solution to the Poisson’s equation to be: 
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Now, let’s set up a simple one-dimensional model and observe how well Lorentz-2D results will measure up against Child’s 
law. Mathematically, this one-dimensional problem is equivalent to two infinitely long parallel plates set at voltages 0  and 

aV , placed at a distance of d  apart. But, numerically, it is not possible to model an infinitely long space. Alternatively, we can 
model a cylindrical cut of this parallel plate structure, Figure 5(a), and set the surrounding wall as a Neumann boundary 
condition of 0=dn

dV . In Lorentz-2D, this can be achieved by defining a rectangle as illustrated in Figure 5(b), and set the 

0=x  as the axis of rotation. 

 

 

(a) (b) 

Figure 5: (a) Solid view of a one-dimensional planar diode. (b) The structure as it is implemented in Lorentz-2D. 

Figure 6(a) illustrates the boundary element distribution needed to model this problem accurately. In order to model the space 
charge effect, a mesh of triangular subareas, Figure 6(b), has to be laid over the region where the particles pass through. 
Another artificial segment, shadow emitter, is also being introduced. This segment will partition the region into two regions. 
The smaller region is the one that sits in the close proximity of the emitter and will be treated differently than the other region. 
This is due to the fact that exactly when the Child’s law is being satisfied, i.e. the device is pumped into saturation; the space 



charge density right at the neighborhood of the emitter surface goes to infinity. Numerically, this can be achieved by modeling 
the singular function in that region. The existence of the shadow emitter gives the software the opportunity to deal with this 
phenomenon. 

  
(a) (b) 

Figure 6: (a) Boundary element distribution. (b) Sub-area distribution for modeling the space charge 

The results of the analysis are summarized in Figure 7 and Table 2, which depicts excellent agreement between computed 
results and the predictions of Child’s law. 
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Figure 7: (a) Voltage contour plot and trajectories (b) Voltage drop along the line [(0.5,0) - (0.5,1)]. 

 
 [ ]2m

mAJ  ][mAI  Error 

Lorentz (RS) -2.33 -7.333 
Theory (RS) -2.33 -7.322 0.14% 

Table 2: Planar diode current and current density results. 



LANGMUIR-BLODGETT 
While Child’s law is the basis of many developments that had taken place in electron gun design, it is only applicable to one 
dimensional planar diode case or the limited area of a problem where it can be approximated as such. Another case, which has 
received special treatment in the literature, is spherical diode structure, which has been formulated in terms of Langmuir-
Blodgett equation. Once again, Lorentz-2D is being used to analyze a spherical diode structure and compare its results with the 
theoretical predictions. 
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Comparison Lorentz-2D Voltages to Langmuir-Boldgett's Prediction
(concentric sphere case)
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Figure 8: (a) Voltage contour plots and trajectories of a spherical diode (b) Normal component of electric field at the 
emitter surface with and without the space charge (c) Convergence of the total computed current versus iteration 
number (d) Voltage drop along a radial line connecting the emitter to the collector. 

 [ ]2m
mAJ  ][mAI  Error 

Lorentz (RS) -3.25 -40.11 
Theory (RS) -3.11 -39.06 2.7% 

 

Table 3: Spherical diode current computation 



PIERCE GUN 
In this section, the results for a Pierce gun [2] with known theoretical answer are presented. According to Pierce, in order to 
maintain a parallel flow of electrons, in the presence of space charge, a focusing electrode has to be attached to the emitting 
surface. The angle between this surface and emitter should be exactly �5.67 . 
 

 
Figure 9: Equipotential lines and trajectories for a classical Pierce Gun 

Here, Lorentz-2D is used to model this structure in both two-dimensional (2D) and Rotational Symmetric (RS) case. Again, 
results from both cases match the theoretical results quite nicely. 

      

 [ ]2m
AJ  ][ m

AI  Error 

Lorentz (2D) -113.37 -1.440 
Theory (2D) -114.24 -1.451 0.76% 

 

 [ ]2m
AJ  ][mAI  Error 

Lorentz (RS) -112.52 -56.639 
Theory (RS) -114.24 -57.887 1.5% 

 
Table 4: Total emitted current (two dimensional Gun) Table 5: Total emitted current (Rotational Symmetric) 

 
Using a built in plotting package, i.e. AutoGraph, the normal component of electric field before and after the space charge 
computation is plotted. As it is expected, there will be a substantial drop in the normal component of the electric field. Also, 
noticeable is the fact that the pierce configuration has actually managed to create an almost uniform electric field at the emitter 
surface. This is expected as Pierce Gun is designed to create a uniform flow of particles. 



 
Figure 10: Normal component of the electric field (at the emitter surface) before and after the space charge 

computation. 
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