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Bruce Klimpke, Integrated Engineering Software/Enginia ResearchMagnetic analysis is a key

component of motor

design. Here’s an 

explanation of a hybrid

finite element/boundary

element approach to 

solve for the magnetic

fields involved.

Y
ou can use two fundamentally different approaches to solve magnetic field
problems. Both involve solving Maxwell’s equations, but you can choose
to solve them in either integral or differential form. The most common
methods for solving problems in differential form are the finite difference
(FD) method and the finite element method (FEM). Because of funda-

mental limitations of the FD approach, FEM is usually the preferred technique.
The second approach is to solve Maxwell’s equations in integral form using either a

boundary element method (BEM) or a volume integral method. We’ll restrict the discus-
sion to the BEM approach, as this is more typically used.

Both FEM and BEM have advantages and disadvantages, depending on the geometry
and material properties involved, as well as the required accuracy. As a result, it’s gen-
erally advantageous to combine differential and integral equation solvers to take advan-
tage of their strengths to solve a given field problem. We’ll use some real-world prob-
lems to show the advantages of each method and why a hybrid of the two is a better
solution for some classes of problems.

INTELLIGENT SYSTEMS

A Hybrid Magnetic Field Solver:

Using a Combined 
Finite Element/Boundary Element 
Field Approach

Using a Combined 
Finite Element/Boundary Element 
Field Approach
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▲

Comparison of FEM/BEM Methods
For simplicity, we’ll consider the following 2D problem as a basis for dis-

cussing some of the latent advantages and disadvantages of the FEM,
BEM, and hybrid approaches (see Figure 1).

To solve a problem with finite elements, you have to discretize the prob-
lem’s entire domain (see Figure 2). Note that the field doesn’t end where
the finite element mesh does; the real problem can never be completely mod-
eled because the domain has to be truncated at some artificial location. The ques-
tion is, how large must the enclosing boundary be in order to get a good approxima-
tion of the real problem? Also, what should the boundary condition be on that
boundary? The simplest method is to set a zero potential boundary condition on the
bounding surface. Other methods can sometimes be used to reduce the effect, trun-
cating the region, but this is a limiting factor for electromagnetic problems.

Also note that the solution is the magnetic vector potential. Generally this parame-
ter is of little interest, and what is really desired is the magnetic field density or
intensity. To calculate the magnetic field density (B), you must differentiate the 
vector potential (A). 

In Figure 2, each of the triangles is a finite element, and the points where they join
are referred to as nodes. If the basis functions α are nodal basis functions, then the Ai
are the values of the magnetic vector potential at each of the nodes. For a vector
potential in 3D, there will be three values at each node corresponding to each of the
Cartesian coordinate directions. In 2D there is one unknown at each node point.

From a numerical perspective, differentiation is always an inherently unstable
operation. Although the solution for A may appear to be quite good, its derivative
will always be considerably worse. 

The physical meaning of Equation (2):

can best be described with the aid of our original 2D drawing (see Figure 3).

Figure 1. Here’s our sample problem, which we’ll
be using to illustrate the various methods.

Both FEM and BEM have advantages and 
disadva ntages, depending on the geometry
and material properties involved, as well as
the required accuracy.

Figure 2. Here’s the sample problem discretized
using finite elements. Notice the artificial bound-
ary to contain the finite elements.

(1)

(2)



4

SYSTEMS SIMULATION

Part of the contribution to the value of
A(r) in 2D is calculated by evaluating the
surface integral in Equation (3), where
Jz(r�) is known and is part of the source
term. The remaining contribution is cal-
culated by evaluating the line integral in
Equation (4).

The analogy in 3D would be a volume
and surface integral. The actual formula-
tion to solve for K(r�) is not included here,
but a Galerkin approach (similar to the
FEM) can be used to define an inner
product. In the BEM, the inner product
enforces the continuity of H across a
boundary: 

The details of the boundary element for-
mulation have been omitted and can be
found in many sources. A couple of key
points should be noted about boundary
elements.

First, you need discretize only the
boundaries of the magnetic materials
rather than the entire domain. This is true
when the materials can be assumed lin-
ear. For nonlinear materials you may
require additional unknowns within the
volume.

Second, the region need not be artifi-
cially truncated. Theoretically the field
can be calculated as far away from the

problem as desired (including infinity).
Third, once K(r�) is known, the mag-

netic potential and magnetic density are
calculated by integrating the unknown.
The numerical process of integration is
stable, resulting in complete continuity of
the fields. The magnetic field density is
calculated by integrating the unknown
with the curl of the Green’s function:

Let’s discuss the major drawback of
BEM. When using a finite
element–based approach, dealing with
nonlinear materials is straightforward.
However, when using a boundary ele-
ment–based approach and dealing with a
material pushed highly into saturation,
you lose the main advantage of having
only to discretize the boundaries. In this
case additional unknowns are required in
the volume of the nonlinear material. So
for our sample problem the discretization
would now appear as in Figure 4. These
additional volume calculations are expen-
sive from a calculation point of view.

Hybrid Method
The hybrid approach combines BEM

and FEM, taking advantage of the
strengths of each method to solve a spe-
cific problem. 

The approach is straightforward, but the
implementation is quite difficult. First we

have to decide which method to use in
each volume (region in 2D): either FEM
or BEM. The two methods are then tied
together by enforcing the continuity condi-
tions on either B or H at the boundaries.
In general the strategy is to use boundary
elements in all linear regions and finite
elements in all nonlinear regions. In some
instances, however, it’s desirable to use
finite elements in linear regions as well.
The rule of thumb is if the surface area of a
volume is large relative to the volume it
encloses, and moderate solution accuracy
is acceptable, finite elements may be the
best choice for these regions. For our origi-
nal model the steel would contain finite
elements and the remainder of the prob-
lem would be solved using boundary ele-
ments (see Figure 5). Remember that the
subdivisions or 2D elements in the coils
are not finite elements but are simply there
to do the surface integration:

If for some reason we chose to use finite
elements for the whole problem (except
the region outside some bounding box,
where we would use boundary elements),
then the discretization would appear, as
in Figure 6.

In both of these models the exterior
region is not artificially truncated. If you
require very high accuracy in all the exte-
rior space, choose the first hybrid model.
If speed is of primary concern, choose the
second hybrid model.

Figure 3. Here’s the same sample problem, but
discretized using boundary elements. Note that the
exterior region has not been truncated or meshed.

(5)

(6)

Figure 4. The mesh must be included in regions
with nonlinear materials, as shown here.

Figure 5. Here’s the sample problem using FEM for
the steel block and BEM for the remainder of the 
problem.

(7)

(3)

(4)
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Conclusion
The purpose of this article is to illustrate

that the best method to use depends on the
problem to be solved. In general the best
strategy is to use a hybrid solver, in which
the advantages of each method can be
applied to each region for the entire prob-
lem.

As with all numerical techniques, how-
ever, there are always subtle difficulties
with each method. Although basic guide-
lines can be established on which method
to use, experience determines the one that
will give the desired accuracy in the least
amount of time.
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Of the following four sample problems, one is

ideally suited for BEM, one for FEM, and two for

the hybrid method.

The first problem (see Figure 7) is a magnet testing

system consisting of a magnet and measure coils. It’s

ideally suited for boundary elements. Magnet field

density values of <10 ppm can be attained with very

few elements (~20). Thousands of finite elements

would be needed to solve this problem with relatively

coarse field values.

The second problem (see Figure 8) is a highly satu-

rated induction motor. This problem is suited for finite

elements because the solution in the exterior space is

irrelevant and many parts of the problem are highly

saturated. The volume area of the linear region is very

small relative to the rest of the problem. This would

be the worst case scenario for boundary elements.

Also, because the torque computation involves the

interaction of two sources, you can achieve accurate

torque computations without very precise field com-

putations. This may not hold for certain cogging

torque applications.

The third problem (see Figure 9) is a magnetic struc-

ture for focusing a magnetic field. The problem

involves a highly saturated field in the iron and

requires highly accurate field computations in the air

regions. This problem is ideally suited for a hybrid

solution where boundary elements are used to calcu-

late the field in the air space and finite elements are

used in the nonlinear iron.

The fourth problem (see Figure 10) is a cogging

torque problem for a DC motor. These tend to be the

most difficult problems for which to get meaningful

results. Although the hybrid approach is expensive in

terms of time, it’s the most reliable method for com-

puting cogging torques. It’s also the best method if

you want to accurately calculate the field exterior to

the motor. ■■

Four Sample Problems

Figure 7. This is an ideal problem for a
pure BEM approach, as the materials
involved are linear, there is extensive
free space, and high accuracy is
required.

Figure 8. FEM would be suited for this
problem because the exterior region is
not important, and almost the entire
problem is nonlinear.

Figure 9. Here, highly accurate field
computations are required in the space
around the nonlinear structure. As a
result, the hybrid method is the right
approach.

Figure 10. Cogging torque often requires accurate
field computations. Although slow, the hybrid
method will properly calculate the field in the
space between the rotor and stator for the cogging
torque calculation.

Figure 6. Here’s the entire problem solved using
FEM, except for the exterior region, where BEM is
used.



FEM

BEM

COMPARISON OF METHODS

Method Advantages Disadvantages

Easily applied to all types of Can be extremely inefficient
problems, unlike BEM, where a if it can be applied at all for
different kernel or Green’s problems where a huge amount
function may be required for of volume must be discretized
each domain of the problem. relative to the total surface area.

Readily handles nonlinear Differentiating the solution to 
problems of all types. Nonlinear get the field is a numerically
regions must be discretized for poor process; e.g., to calculate
both differential and integral B, we have to take the curl A. 
formulations, and you can Plots of A will appear smooth,
use very efficient nonlinear but B will have discontinuities,
methods within the finite artifacts of the differentiation.
element system of equations.

As long as a good mesh can be A large amount of data must be
created, implementation is stored compared to that needed
straightforward. for BEM.

Once the problem has been The “action at a distance” 
solved, it’s trivial to calculate concept applies only to 
the field. Since the solution is equivalent source methods.
known at the mesh nodes, you For example, forces and torques
can interpolate to any point can’t be calculated by Amperian
within the mesh. currents using FEM.

Solution time can be better Inherently integral equations
than with BEM for problems are difficult to implement for
where the surface is large com- general curved surfaces
pared to the volume it contains. because of the singular kernel.

You can attain very high Not easily applied to all types of
accuracy for fields because the problems. A different domain or
field is calculated by integrating Green’s function may be required
the solution. for each domain of the problem.

The problem doesn’t have to be Cannot handle nonlinear 
artificially truncated, nor a problems efficiently. For weakly
boundary condition applied to nonlinear problems the method
the artificial boundary. is satisfactory, but for highly

nonlinear problems the solution
time is excessive.

For linear problems, unknowns Longer solution time for post-
are located only on the processing calculations for some
boundaries of the problem. This classes of problems when
radically reduces mesh compared to FEM.
generation time and storage
requirements.
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