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Abstract - The dominant method to solve magnetic field problems is 
the finite element method. It has been used successfully on many 
devices including motors, solenoids, and actuators. More formally 
using finite elements is a method of solving Maxwell's equations in 
differential form.  
The less common method of solving magnetic field problems is using 
the boundary element method. It has been used successfully on many 
magnetic field problems including sensors, NMR machines, and beam 
analysis problems. Boundary elements are associated with solving 
Maxwell's equations in integral form. Both methods have some 
inherent advantages and disadvantages.  
The ideal solution would be to solve a given problem where the 
advantages of both methods could be applied simultaneously. This 
paper discusses the advantages of such an approach.  
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Abstract - The dominant method to solve magnetic field problems is the finite element method. It 

has been used successfully on many devices including motors, solenoids, and actuators. More 

formally using finite elements is a method of solving Maxwell's equations in differential form.  

The less common method of solving magnetic field problems is using the boundary element method. 

It has been used successfully on many magnetic field problems including sensors, NMR machines, 

and beam analysis problems. Boundary elements are associated with solving Maxwell's equations in 

integral form. Both methods have some inherent advantages and disadvantages.  

The ideal solution would be to solve a given problem where the advantages of both methods could 

be applied simultaneously. This paper discusses the advantages of such an approach.  

INTRODUCTION 

Two fundamentally different approaches can be used to solve Maxwell's equations. The most 
common method is to write the governing equation in differential form, such as Poisson's equation, 
which we will discuss later. The most used numerical technique used to solve equations posed in 
differential form is the Finite Element Method (FEM). The Finite Difference (FD) method can also be 
employed but has some fundamental limitations.  

The less common method is to write the governing equation in integral form. Numerically the 
problem can then be solved by the Boundary Element Method (BEM). We will see how Poisson's 
equation can be posed in integral form and then solved.  

Both of these methods have large advantages and disadvantages depending on the geometry, 
material properties and the required accuracy of the final solution. Thus, in general, it is 
advantageous to combine both differential and integral equation solvers to take advantage of there 
strengths to solve a given problem. Some real world problems are discussed to illustrate the 
advantages of both the finite element and boundary element numerical solvers and why a 
combination of both is preferred.  

FEM METHOD 

In general any field problem can be expressed in the form  

 

where is the exact solution, is an operator, and is the source or forcing function. For finite 

elements is a differential operator and is the solution, which is normally a scalar or vector 
potential. The magnetic vector potential is governed by the differential equation  

 



where is the permeability of the material and is the source current density. Assuming the 
permeability is linear this can be simplified to  

 

The operator is the curl-curl operator, is the quantity to be determined and is the source 
function.  

For all practical problems it is impossible to solve for exactly. To arrive at an approximate 
solution we can use a Galerkin approach. Simply put, we define a inner product throughout the 
domain of the problem, the solution minimizing the energy in the system. That is we construct a 
linear system of equations derived from an inner product  

 
where is a set of basis functions defined over the domain of the problem.  

For the curl-curl operator we will find the best approximation for over the domain using the 
basis functions. That is  

 

where the are a set of scalar basis functions.  

For simplicity, we will consider the following two dimensional problem as a basis for the discussion of 
some of the latent advantages and disadvantages of the FEM, BEM and hybrid approach.  

 

Figure 1: Sample Geometry 

Using a pure finite element approach the discretization of the problem would appear as follows:  



 

Figure 2: Finite Element Discretization 

Each of the triangles is a finite element and the points where they join are referred to as nodes. If 

the basis functions are nodal basis functions then the are the values of the magnetic vector 
potential at each of the nodes. Of course for a vector potential in 3D there will be three values at 
each node corresponding to each of the Cartesian coordinate directions. In 2D there is simply one 
unknown at each node point.  

Thus to solve a problem with finite elements, the entire domain of the problem has to be discretized. 
Two other key points should also be noted here. First is that the field does not end where the finite 
element mesh does. Thus the real problem can never be completely modeled as the domain has to 
be truncated at some artificial location. The question is how large must the enclosing boundary be in 
order to get a good approximation to the real problem. As well what should the boundary condition 
be on that boundary. The simplest method is to set a zero potential boundary condition on the 
bounding surface. Other methods can sometimes be used to reduce the effect truncating the region 
but it is a limiting factor for electromagnetic problems.  

Another key point is that the solution is the magnetic vector potential. Generally this parameter is of 
little interest and what is really desired is the magnetic field density or intensity. To calculate the 
magnetic field density the vector potential must be differentiated. That is  

 
From a numerical perspective differentiation is always an inherently unstable operation to do. 

Although the solution for may appear to be quite good, it's derivative will always be considerably 
worse. We shall compare these two key points with the BEM technique later.  

BEM METHOD 

As with the finite element method we start with the general operator notation  

 
For boundary elements  

is an integral operator and is the solution which is normally a scalar or vector source. The 
magnetic vector potential is governed by the integral equation  

 

where is the free space Green's function, is the known volume source, and is 

the unknown surface source to be determined. The operator is the integral operating on .  

 



for 2D and  

in 3D.  

is the location where is being calculated and is the location of the source terms. 
Rearranging to put it in operator form  

 

In this case the unknown is and the source term is .  

The physical meaning of this equation can best be described with the aid of our original two 
dimensional drawing.  

 

Figure 3: Visual Representation of 
Integration Method 

Part of the contribution to the value of in two dimensions is done by evaluating the surface 
integral  

 

where is known and is thus part of the source term. The remaining contribution is calculated 
by evaluating the line integral  

 
The analogy in three dimensions would be a volume and surface integral. The actual formulation to 

solve for is not included here, but similar to the finite element method a Galerkin approach 
can be used to define an inner product. In the boundary element method the inner product enforces 

the continuity of across a boundary. This is simply . The details of the 
boundary element formulation have obviously been omitted and can be found in many sources. As 
with the very brief discussion on finite elements a couple of key points should be noted about 
boundary elements.  

First of all the entire domain does not need to be discretized but only the boundaries of the magnetic 
materials. This is true when the materials can be assumed linear. For nonlinear materials additional 
unknowns may be required within the volume. This will be discussed later.  



The second key factor is that the region does not need to be artificially truncated. Theoretically the 
field can be calculated as far away from the problem as desired (including infinity).  

The third feature is that once is known, the magnetic potential and the magnetic density are 
calculated by integrating the unknown. The numerical process of integration is very stable resulting 
in complete continuity of the fields. The magnetic field density is calculated by  

 
Thus the field is calculated by integrating the unknown with the curl of the Green's function.  

At this point the major drawback of the boundary element method should be discussed. Dealing with 
nonlinear materials is straightforward using a finite element approach. However, for boundary 
elements, the main advantage of only having to discretize the boundaries is lost when material is 
pushed highly into saturation. In this case additional unknowns are required in the volume of the 
nonlinear material. So for our sample problem the discretization would now appear as follows with 
additional unknowns required within the nonlinear volume.  

 

Figure 4: Additional Unknowns for 
Nonlinear BEM 

As will be shown later these additional volume calculations are expensive from a calculation point of 
view.  

HYBRID METHOD 

The hybrid approach combines the boundary element and finite element methods to solve a specific 
problem. The idea is, of course, to take advantage of the strengths of each method for a specific 
problem.  

The approach is straightforward but the implementation is quite difficult. First we have to decide 
which method to use in each volume (region in 2D); either finite element or boundary element. The 

two methods are then tied together by enforcing the continuity conditions on either or at the 
boundaries. In general the strategy is to use the boundary elements in all linear regions and finite 
elements in all nonlinear regions. In some instances, however, it is desirable to use finite elements in 
linear regions as well. The rule of thumb is if the surface area of a volume is large relative to the 
volume it encloses, and moderate solution accuracy is acceptable, the finite elements may be the 
best choice for these regions. Thus for our original model the steel would contain finite elements and 
the remainder of the problem would be solved using boundary elements. Remember that the 
subdivisions or 2D elements in the coils are not finite elements but are simply there to do the surface 



integration.  

 

 

Figure 5: First Hybrid Model 

If for some reason we chose to use finite elements for the whole problem except the region outside 
some bounding box where we would use boundary elements then the discretization would appear as  

 

Figure 6: Second Hybrid Model 

The clear advantage to both of these models is that the exterior region is not artificially truncated. If 
very high accuracy was required in all the exterior space then the first hybrid model would be 
chosen. If speed was of primary concern then the second hybrid model would be preferable.  

SUMMARY OF THE TWO METHODS 

In general both methods have some major strengths and some major drawbacks. These can be 
easily summarized.  

For boundary elements:  

1. Extremely high accuracy is attainable for fields. This is due to the field being calculated by 
integrating the solution.  

2. The problem does not have to be artificially truncated and a boundary condition applied to 
the artificial boundary.  



3. For linear problems unknowns are only located on the boundaries of the problem. This 
radically reduces mesh generation time and storage requirements.  

4. The biggest disadvantage of boundary elements is the inability to handle nonlinear problems 
efficiently. For weakly nonlinear problems the method is satisfactory but for highly nonlinear 
problems the solution time is excessive.  

5. For some classes of problems the solution time for post-processing calculations can be 
longer than those for finite elements.  

For finite elements:  

1. The method is easily applied to all types of problems unlike the boundary element method 
where a different kernel or Green's function may be required for each domain of the 
problem.  

2. Nonlinear problems of all types are readily handled. The nonlinear regions have to be 
discretized for both differential and integral formulations. Thus the advantage of only 
discretizing the boundaries of the problem for boundary elements is lost. Very efficient 
nonlinear methods such as Newton-Rhapson are easily employed within the finite element 
system of equations.  

3. Provided a good mesh can be created the finite element implementation is quite 
straightforward. Inherently integral equations are very difficult to implement for general 
curved surfaces due to the singular kernel.  

4. The field is trivial to calculate once the problem has been solved. As the solution is known at 
the nodes of the finite element mesh, it is easily interpolated to any point within the finite 
element mesh.  

5. For problems where the surface area is large compared to the volume it is contained in the 
solution time can be very good compared to boundary element formulations.  

6. The converse to (5) is also true. For problems where a huge amount of volume must be 
discretized relative to the total surface area the finite element method can be extremely 
inefficient if it can be applied at all.  

7. Differentiating the solution to get the field is a numerically poor process. So, for example, to 
calculate we have to take the curl . The plots of will appear quite smooth but will have 
discontinuities which are artifacts of the method due to differentiation.  

8. The amount of data required to be stored is large compared to that needed for boundary 
elements.  

9. The "action at a distance" concept is only applicable to equivalent source methods. Thus, for 
example, forces and torques cannot be calculated by Amperian currents using finite 
elements.  

Three sample problems are shown below: one suited ideally for each of the methods (BEM, FEM, and 
Hybrid).  

The first problem is a magnet testing system consisting of a magnet and measure coils. This problem 
is ideally suited for boundary elements. Magnet field density values of less than 10 parts per million 
can be attained with extremely few elements (approximately 20). Thousands of finite elements would 
be needed to solve this problem with relative course field values.  



 

Figure 7: Ideal Problem for Pure 
BEM 

The second problem is a highly saturated induction motor. This problem is ideally suited for finite 
elements as the solution in the exterior space is irrelevant and many parts of the problem are highly 
saturated. The volume area of the linear region is very small relative to the rest of the problem. This 
would be the worst case scenario for boundary elements. As well since the torque computation 
involves the interaction of two sources, accurate torque computations can be arrived at without very 
precise field computations. This may not hold for certain cogging torque applications.  

 

Figure 8: Ideal Problem for pure FEM 

The third problem is a magnetic structure for focusing a magnetic field. The problem involves a 
highly saturated field in the iron with highly accurate field computations required in the air regions. 
This problem is ideally suited for a hybrid solution where boundary elements are used to calculate 
the field in the air space and finite elements are used in the nonlinear iron.  



 

Figure 9: Hybrid Solution 
Required 

Conclusion 

Many publications are widely available on the solution of magnetostatic field problems using finite 
elements. The method has been widely accepted among many electro-magnetic designers. In 
addition the boundary element method has been used successfully instead of the traditional finite 
element approach. The purpose of this paper is to illustrate that the best method to use depends on 
the problem to be solved. In general the best strategy is to use a hybrid solver in which the 
advantages of each method can be applied to each region for the entire problem.  

As with all numerical techniques, however, there are always subtle difficulties with each method. 
Although basic guidelines can be established on which method to use it is experience that determines 
which method will give the desired accuracy in the least amount of time.  
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