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ABSTRACT

Demand from the biosciences continues to increase for systems able to assist in the
preparation and analysis of biological samples. Appropriately, dielectrophoresis
continues to emerge as a valuable technique for characterizing a diverse array of
particles. Particle processing systems capable of autonomously executing various
operations on samples may offer cost effective means for such tasks. Dielectrophoretic
microelectromechanical systems technology is well positioned to participate in this
growing industry.

Dielectrophoresis is an effective means for micro-particle manipulation, but the
mechanical structures required for such work are typically cost prohibitive in volumes.
For dielectrophoretic particle processors to be competitive, MEMS technology must be
leveraged to provide useful functions at reasonable costs.

This thesis will study three dielectrophoretic structures that are candidates for
integration into planar processing systems. The dielectrophoretic function of each
component will first be analytically described. Then a discrete planar electrode model
will be derived and characterized using boundary element method simulation. Lastly,
experimental levitation data from a fabricated discrete planar quadrupole device will be

used to validate analytical theory.
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INTRODUCTION

Science has long pursued an understanding of the electrical properties of materials,
and repeatedly the search unearths both novel applications as well as new and
increasingly complex questions. Consider the biological sciences. Their pursuit of the
mechanisms of life have led to astonishing discoveries that by and large have benefited
humankind tremendously. Science can place a criminal at the scene of a crime from a
microscopic genetic signature, it can manipulate complex metabolic pathways to ward off
illnesses and an entire organism may now be cloned from a molecular ‘original’.

Whilst science wields such powerful abilities, it is important to remember that nature
is still ultimately in command. Diseases such as acquired immune deficiency syndrome
and cancer continue to claim victims, and bacterial adaptation yields strains able to
withstand medicine’s most powerful drugs. Humankind’s desire to study, understand and
ultimately control the environment in which we live is an evolutionary advantage to our
species. We have ascended the natural order to become the ultimate macroscopic
predator, but foes from the microscopic realm of our world increasingly pose the greatest
threats. To defend against these viral and microbial threats, cross discipline efforts must
be increasingly undertaken to further unravel their mysteries.

Cellular physiology and biochemical mechanisms are of paramount significance in
the pursuit of biological understanding, and an immensity of information in these fields
remains unexplained. In an organism of even moderate complexity, the diversity of
function exhibited by the composite classes of cells and biomolecules can be staggering.

From a microbiological point of view, much is known about the physical and chemical
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makeup of simple cells. Theories of symbiotic cellular evolution offer explanations for

the ‘cell within a cell’ appearance of mitochondria, the fluid mosaic model depicts a
highly specialized cellular membrane comprised of emulsified globular proteins in a lipid
bilayer and polymer biochemistry provides mechanistic foundations for cellular division.

While many areas of biological understanding are advanced, others like the electrical
properties of a cell, remain in their infancy. One may ask what are the solutions to
Maxwell’s equations throughout a living cell? How do changes in cellular physiology
and structure affect this electrical makeup? How do externally imposed electromagnetic
fields influence the physiological state of a cell? To eﬁ'ectiveiy address questions such as
these, methods for modeling various hypotheses are required, and subsequent
experimentation must be performed to support or refute the hypothesis. While such a
process is characteristic of the scientific method, the tools required to complete the cycle
in the biological laboratory are not necessarily available.

The physical sizes of specimens and the specialized chambers in which these
specimens must be placed increasingly demand manufacturing precision and scale
characteristic of the microelectronics industry. Unfortunately, as the complexity of both
the test devices and the specimens increase, analytical solutions to the electrostatic
systems become evasive. Simulation tools must therefore be employed to augment the
mathematician’s analytical solution as the theoretical benchmarks to experimental data.

Simulation packages implementing various numerical methods have experienced
widespread acceptance across a variety of scientific disciplines for decades. Algorithms
including the finite difference method (FDM), finite element method (FEM) and the

boundary element method (BEM) have offered scientists iterative answers to problems



which are too complex for analytical solution. Rapid growth in the area of
microelectromechanical systems (MEMS) design has begun to provide a new and unique
set of problems for these simulators to tackle. Dielectrophoretic MEMS is one
technology that will increasingly rely on numerical simulation.

Dielectrophoresis , or DEP, deals with the behavior of neutral matter in non-linear
electric fields. The frequency dependent dielectrophoretic spectrum is determined by
particle geometry, the degree of non-linearity in the applied electric field and the relative
polarizabilities of the particle and the surrounding media. With its roots in Maxwell’s
equations, dielectrophoresis experimentation offers valuable insight into the electrical
makeup of materials.

This thesis aims to stimulate continued development of cost effective devices
capable of automating a wide range of analytical laboratory tasks. Applying precision
microelectronics technology, MEMS, boundary element method (BEM) electrostatic
modeling and traditional dielectrophoresis theory, an economical set of planar electrode

devices have been assembled.
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An out-of-phase current (/) will lead the applied voltage (¥) by 90 degrees as given by

I = joCV = joeSl (5)
&

o

The non-ideal dielectric media will also possess a finite conductivity (o' ) giving rise

to a conductance

=4 5T ©6)
d £

o

resulting in an in-phase current

IR=GV=c>"£€‘£ N

o

The total capacitor current (/7) can now be expressed as the sum of Ic and Ig

CF _ e & ®
& £

(4 o

I, = jole-jo' ]

where £* is the complex permittivity of (1).

While such an analysis is useful in developing an intuitive appreciation for the
interrelation of polarization and conduction, it must be noted that these results are merely
an implicit representation of the true conduction and polarization mechanisms governed
by Maxwell’s equations. A rigorous analysis of the subject of polarization yields the

complex dielectric factor [1]

E=¢*—jo*lw 9)



where £* and o * are the complex dielectric constant and complex conductivity

respectively. The complex dielectric factors (&, £, ) describe the electric field boundary

conditions for joined media as

& (A e E)+&, (A, 0 E,)=0 (10)
For ideal dielectrics, this relationship reduces to the familiar
g (Fi, ¢ E\)+¢&,(7, 9 E,)=0 (11)

condition for electric fields across dielectric boundaries shown in Figure 1.

Een, +Epn,=0

Figure 1 — Normal Electric Field Boundary Condition at Dielectric Interface

The purpose of this work is not to study Maxwell’s polarization equations, but rather
to characterize apparatus capable of achieving dielectrophoretic particle manipulation.

The discussion herein simply serves to highlight the permittivity, conductivity and




frequency dependencies which are fundamentally part of the electric polarization

response of matter.



DIELECTROPHORESIS

A useful starting point in developing an understanding of dielectrophoresis is to
contrast it with the more widely known electrophoresis. The motion of charged bodies in
the presence of electric fields (uniform or non-uniform) is described by electrophoresis.
Dielectrophoresis, on the other hand, characterizes the behavior of polarizable matter in
the presence of non-uniform electric fields. Stated another way, electric fields of any
configuration will exert a Coulombic force on any charged body subjected to the field
(electrophoresis), but for a neutral body to experience a net force (dielectrophoresis), the
applied electric field must be non-uniform. The dielectrophoretic force is also
distinguished by the fact that its direction is independent of the electric field’s

instantaneous polarity, thereby allowing variable frequency AC sources to be used.

Fundamentals of the DEP Force

To derive the dielectrophoretic force, one may consider a small dielectric body of

volume (v) and polarizability () exposed to a z-aligned electric field £(z) as shown in

Figure 2. The net dipole moment induced in the body will then be
p=avE (12)

This polarization may be equivalently represented by two charges (+¢q ), separated by a

distance 4 such that

p=qd (13)



>N

—e e

= - e
oL | awE=p=qgd a

F"'
Polarizable Equivalent
Particle Dipole

Figure 2 — Equivalent Dipole Polarization

To assess the total force exerted on the body, the coulombic force exerted on each end of

the equivalent dipole is considered. The charge +g experiences
F, =qE(z.) (14)

while the charge —q experiences

F_ =-qE(z.) (15)

Requiring that the equivalent dipole dimension (d) be small, the first two terms of a

Taylor series expansion of E; about z. yields
E(z.)=E(z.)+d(0E/&z) (16)

Substituting (16) into (14) and summing the result with (15), the net force on the dipole

becomes
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F,, =qd(E/8z)=(p.8/ &2)E a7

With this result in mind, examination of Figure 2 confirms that the net force on the dipole

would be in the positive z-direction:
«* the polarization (p) is in the negative z-direction, i.e. p,<0

e Eis in negative z-direction with increasing magnitude in the positive z-

direction, i.e. 8E./0z <0

While this example is simplistic in its geometry, the analysis lends itself to

expansion in the Cartesian system to the general dipolar expression

F=(p,0/ox+p,8/8y+p.8/%)E=(peV)E (18)
Expanding the vector operator (p V) with the vector identity

(PeVIE=V(peE)~(EeV)p~px(VxE)~Ex(Vxp) (19)
and dropping the curl terms, the force reduces to

F=(peV)E=V(peE)—(EeV)p (20)
Substituting (12) into this expression and rearranging yields

F=av(EeV)E =avV|E| ~av(EeV)E 1)

from which, upon simplification, the dipolar dielectrophoretic force can be simply

expressed by:

- =12
F=1avw|E| (22)
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The dielectrophoretic force responds to the polarizability of the material (ct), the

volume (v) and the gradient of the square of the electric field. The dependence on the
square of the electric field gives the dielectrophoretic force independence from
instantaneous field polarity. In the presence of AC fields therefore, the force will be a
time averaged force.

The precise polarization in a body depends on the complex permittivities of the

particle and the surrounding media as well as the geometry of the particle. A

homogeneous sphere of radius r and complex permittivity s; immersed in a media with

complex permittivity £,, and exposed to an electric field, will undergo polarization

according to the Claussius-Mosotti polarization coefficient

£, &,
K| =——— (23)
£, +2¢,
resulting in a net dipolar dielectrophoretic force being exerted on the sphere of
Fpep =2me,r’ Re[K,]VE? (24)

This formulation quantifies the dependencies on particle volume (%), polarizability (K;)
and the gradient of the electric field squared (VE?).
Positive vs Negative Dielectrophoresis

For the homogeneous sphere, the Claussius-Mosotti factor (23) is of fundamental

importance in the determination of the dielectrophoretic force. Considering this function

in the absence of particle and media conductivities, the complex permittivities ( e; )
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reduce to the dielectric constants (¢,,£,, ) and the Claussius-Mosotti factor becomes the

real number expression
£,—€
= Zp  Cm <
k, = 5 25)
£,+2¢,

Now imagining a nylon sphere of permittivity 4 immersed into two media: first, water of

permittivity 80, and second, air of permittivity 1. Evaluating k; for these two scenarios

air

yield kg, = “Tea =-05 and £, = % =0.5. The sign reversal indictates that (all other

things being equal) the direction of the dielectrophoretic force would be reversed for the
two materials. This observation highlights the two distinct modes of dielectrophoresis:
negative and positive. Negative dielectrophoresis (the nylon ball in water) tends to eject
lower permittivity particles from high field regions; they will be forced opposite the
gradient of the E-field squared. Positive dielectrophoresis (the nylon ball in air) results in
objects of higher permittivity displacing media of lower permittivity from regions of
greater electric field strength. The Claussius-Mosotti factor, being in reality frequency
dependent, gives rise to a particle’s characteristic dielectrophoretic spectra whereby
positive dielectrophoresis can be observed at one frequency, while negative

dielectrophoresis is demonstrated by the same particle at another frequency.

An alternative approach to validating the dielectrophoretic phenomenon can be
understood from simple energy principles [25]. Consider the parallel plate capacitor
shown in Figure 3. Conservation of energy for the system shown in Figure 3 can be

stated by

A WMcchaical + AWElean‘ca! = AWBalmy (26)
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denoting mechanical, electrical and battery energies respectively. If the dielectric object

in Figure 3 is allowed to move by a small distance Ax closer to the parallel plates, the

total capacitance of the parallel plate capacitor will increase by an amount AC . For the

Low Field

High Field Fringing

Electric Field——,

X
Dielectiic object —>

Figure 3 - DEP Force From Energy Principles

battery to maintain a constant voltage across the now slightly larger capacitor, an
additional amount of charge

AQ =(AC 27
must be deposited on the capacitor plates thereby increasing the stored electrical energy

of the capacitor by

AW,

e

aricat = AW =3(A0W (28)

The battery, on the other hand, having moved the additional charge AQ through its

potential ¥ will have supplied an amount of energy
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AW, =(AQW =24W (29)

tery

which is observed to be twice the additional electrical energy now stored in the capacitor.
Half of the energy supplied by the battery manifested itself as stored electrical energy in
the capacitor whereas the other half of the supplied energy must have gone to mechanical

work required to change the capacitance by AC.
Now, substitution of (28) and (29) into (26) results in
AW \pechanicas = AW (30)

which may be rearranged using the relationship

A WMechmical = DEPAx (3 1 )
to yield
AW oW 7]
F.Bo=—= =—(LCr? 37
oer = —4& =5t 1 (32)

The system of Figure 3 would tend to pull the dielectric object into the capacitor thereby
increasing the capacitance of the system. This phenomenon is demonstrative of positive
dielectrophoresis. Conversely, the same analysis applied to a water dielectric capacitor
can be used to predict negative dielectrophoresis on a object of relative permittivity lower
than that of water. For the total capacitance of the structure to increase (as constant
voltage energy principles dictate), the lower dielectric particle must be repelled from the

capacitor region.
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Dipole Levitation Theory

Numerous investigators [16,17,33] have demonstrated the ability of axially
symmetric electrode structures to achieve levitation of individual particles. A common
configuration used to implement a dipole levitation system is the cone-plate assembly of
Figure 4b whereby a rounded cone electrode is brought into close proximity to a
conducting ground plane. The potential due to this structure is derived from the analytical
solution for the electrostatic potential due to a semi-infinite line charge over a ground
plane (Figure 4a) which can be shown [38] to be

v A 1n[h+z+,/(h+z)'+p J 33)

4re h-z-{-\/(h—-z)2+p2

The equipotential surfaces of this scalar field take the form of rounded cones and define
the curvature of the conducting tip used for experimentation. Also from the voltage

equation (33), the electric field along the z-axis

oV
E| =——morH 34
oo =%, (4)
is determined and the gradient of its square can easily be shown to be
OE! _ A2 2h*z
oz 2nel (WP -z2%)
2 (35)
=3 G.(2)

where the notation G(z) is adopted to collect geometric dependencies and the subscript

o is meant to indicate a semi-infinite line charge. The VE? term in the dipolar

dielectrophoretic force expression of (24) is now analytically defined. Upon substitution
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| D
AC/m
' v‘ /
Conducting
va \ Cone A
v, \
e v, //_\.\
V. """ L SRR [! /\/ V"
h v, Z. 7 0,0) N .
; v, : z ; z
77 77T 777 T 77T ST T 77 r
(a) Semi-Infinite Line Charge (b) Cone-Plate Approximation
Over Ground Plane
Figure 4 — Typical Dipole Levitator Architecture

and normalization by r’, the force on a homogeneous sphere centered at (z,0) in F igure 4b

becomes

2
L 2 Rk 6.02) 36)

r°  ne,

Quadrupole Levitation Theory
Multipolar moment dielectrophoretic quadrupole theory {2,3,13] enlists a Legendre
polynomial expansion in spherical coordinates of the potential due to an azimuthally
symmetric arrangement of point charges. The theory predicts a quadrupolar
dielectrophoretic force proportional to the 5™ power of a particle’s radius. Quadrupole
levitation is but one application to emerge from this enhanced theory. The quadrupole
levitator comprises an azimuthally symmetric electrode arrangement capable of

sustaining passive stable particle levitation. The model used for analytical analysis of
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Figure 5 ~The Point Charge Quadrupole Model

quadrupole behavior comprises four point charges (two +Q and two —Q) arranged as
shown in Figure 5. The quadrupole itself is comprised of the 4 point charges distributed
with azimuthal symmetry about the z-axis.

From the generalized expression in spherical coordinates for the potential (P, ) at

some point (r,6,¢ ) due to a point charge Q located at (r',6",¢4'), superposition is applied

to determine the electrostatic potential in the vicinity of the quadrupole. A mathematical

extension of the effective dipole method to the effective multipolar moment method [2] is
used to determine the force on a vanishingly small sphere with a surface charge

distribution o; as

F=[ %cEds (37
= L O
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where the z-component of the electric field (E;) is obtained from the axial derivative of

the potential function. For particles of radius r <<+v/b® +z? , the series expression of the

z-directed force component can acceptably be truncated and normalized by #° to become

F.__3¢ (z/b) 30
= E-;R K 1 2= R K “8
r’ &, el "b7(1+(2/6)*)" 7, elK, JGouu (2) (38)

where Gouup(z) collects the geometric dependencies, n=2 and

_n2n+1)(e, —&.)

ne, +(n+1e,,

(39

Contrasting the quadrupole levitation force on a sphere in (38) with the dipolar
dielectrophoretic force on a sphere in (24), two fundamental differences are evident.
First, the ‘radius cubed’ dependence in the dipolar force expression is replaced by the
‘radius to the fifth’ dependence in the quadrupole case. Second, the Claussius-Mosotti
factor present in the dipole expression is replaced in the quadrupole expression by the
higher order K> term. The quadrupolar force’s dependency on (particle radius)’ is the
distinguishing feature which makes the quadrupole an attractive component for inclusion
in particle processing systems.

Isomotive Theory

Isomotive dielectrophoresis, as the name implies, is concerned with the generation of
electric field topographies which exert a constant force on a particle independent of the
particie’s position within the structure. Revisiting the dipolar force equation (24) and the
quadrupolar force equation (38), both contain dependencies on the vertical position of the

particle via the the Gu(z) and Goup(z) terms respectively. The dipole force
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monotonically increases with z, while the quadrupole force increases from zero at z=0,

followed by a maxima before decaying asymptotically to zero as z — «. While both of
these topographies are useful in particle levitation and trapping applications, of
considerable utility to biological applications is the ability to separate particles of
differing electrical composition. The isomotive electrode system with its position
independent force characteristic offers such a capability.

The isomotive derivation begins with a solution to Laplace’s equation, IVlz V=0,in
cylindrical coordinates [1]

V = Ar" sin(n8) (40)
for which the supporting electric field

E=-VV =-ndr"[a, sin(nd) + a, cos(n6)] 41)
and

E?=EeE=n*4*r*"" (42)
Reusing the simple dipole force equation of (22)

F,=—1aw|E[ =~av(n-Dn*4*r*4, (43)

To eliminate positional (r) dependence on the magnitude of this force, the condition 2n-
3=0 is imposed, thereby mandating n=3/2. The force in (43) now set to a constant vector,

of magnitude Fisour, along the radius (r) allows for the definition

2 |2F,
A =2 ISOM
3 va @4
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Figure 6 — An Isomotive Electrode System (Sectional View)

glass beads introduced along the center of the isomotive structure would experience a

uniform acceleration and would in time (t) travel a distance given by
d=tar’ (47)

With the acceleration independent of particle size, this distance will be uniform for the
entire family of glass beads. The isomotive electrode system would not assist an
individual needing to sort (by size) a uniform material particle population, but an
isomotive processor for segregating particles by electrical composition would be a

valuable analytical tool in a variety of applications.
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ELECTROSTATIC SIMULATION
Electrostatic field simulation encompasses the computer aided engineering task of
numerically solving Maxwell’s equations for arbitrary geometric problems.
Electromagnetic simulators have gained acceptance for their ability to solve problems too
complex for analytical representation. Several different numerical methods form the
computational engines of various commercial solvers. While numerical comparison
between different algorithms will not be provided, fundamental algorithmic differences
among three popular methods (finite difference, finite element and boundary element)
will be presented. For numerical simulation in this thesis, only a boundary element
method software package was utilized. The simulation program is a 3-D electrostatic
design package entitled Coulomb; it is one of a set of boundary element method
simulation packages offered by Integrated Engineering Software of Winnipeg, MB,
Canada.
Finite Difference Method
The simplest, and typicaily therefore the least accurate, numerical method available
for electrostatic modeling is the finite difference method. A domain-type solver
(involving a direct solution of the governing differential potential equation), the finite
difference method is typically an iterative process whereby a truncated Taylor series
expansion of the differential operator is applied at each point of a rectilinear grid over the
problem region. The uniform grid used to discretize the problem space makes for crude
geometric modeling particularly in regions containing highly non-linear field

topographies. In open field problems (or unbounded problems), the method involves a
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large number of unknowns, and consequent lengthy solution times, as the uniform grid

must extend across expansive regions.
Finite Element Method

Another domain-type approach, the finite element method also solves Maxwell’s
equations in differential form. The problem geometry is entered, and the solution space
is discretized into triangular (for 2-D FEM) or tetrahedral (for 3-D FEM) finite elements.
From this discretized interpretation of the problem, a linear system of equations is
compiled to calculate the electrostatic field values at the nodes of each element. Iteration
to a final solution is achieved by the algorithmic goal of minimizing a function
proportional to the energy of the system. The result produced by a finite element solver
is the direct solution of the governing differential equation for the potential.

For bounded geometry problems (the electric field in the core of a solenoid), the
generation of finite elements is less problematic than for open geometries (the electric
field everywhere external to a solenoid). In the latter case, artificial boundaries must be
imposed on the geometry to allow the finite element mesh to terminate. This truncation
of the problem space, a field of research in itself, must be carefully performed to
minimize errors in the final solution.

The discretization of space, or meshing, for finite element analysis is time
consuming, but it is a critically important step. In 2-D finite element analysis, mesh
generation may be done manually with the aid of a graphical interface, but automatic
mesh generators are commonly provided with 2-D FEM tools. For 3-D FEM solvers,
problems with providing effective representation of a 3D mesh on a 2D computer screen

makes automatic 3D meshing a virtual necessity. By binding all the objects in the
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problem together via the rigid mesh, the finite element method may be heavily burdened

with parametric analysis of different geometries. This is because re-meshing may need to
be redone prior to each solver cycle.
For many applications, shortcomings of the finite element method include:
e large problem sizes
e derivative discontinuities in the geometric model
e localized errors in fields calculated by differentiation and interpolation
e algorithmic difficulties associated with error checking
e the need to artificially truncate unbounded problems.
This is not to say that the finite element method is flawed, or flatly inferior to other
methods. The method is relatively simple to implement in software, and given an
appropriate mesh design, will yield precise solutions.
Boundary Element Method
The boundary element method is a boundary-type solver that has historically been
ignored in favor of finite difference and finite element domain-type solvers. This is due,
in large part, to the simplicity of implementing domain-type solvers in software. The
boundary element method, utilizing complex integration techniques, is a complicated
algorithm to program into software, whereas domain-type solvers rely on simple linear
algebra to arrive at their solutions. It has not been the theory of boundary element
analysis impeding its commercialization, but rather the translation of its theoretical
complexity into usable software.
The boundary element method, as with any numerical method, must also discretize

the problem space into elemental units, but boundary-type and domain-type solvers are
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distinguished by the architecture of their elements and the form of Maxwell’s equations

those elements are used to solve for. The boundary element method only discretizes the
boundaries between neighboring media and then solves Maxwell’s equations in integral
form along those boundaries. The unknowns being solved for are physical charges and
currents adequate to maintain all boundary conditions prescribed by the geometry. The
equivalent sources solved for in boundary element analysis, due to their physical
significance, provide intuitively simple means for direct computation of global quantities
such as force, torque, stored energy and capacitance. Additionally, scalar and vector field
solutions emerge from integral operations which minimize errors by smoothing
discretization noise in the boundary sources.

In boundary element analysis, unlike finite element analysis, unbounded problems do
not require an arbitrary truncation of the problem space to be performed. Requiring
elements only on the physical boundaries between media allows for real limits at infinity
to remain intact. While this elemental variation delivers the benefit of a dimensional
reduction in the number of elements required, some of this efficiency is lost to the
increased computational complexity of the integral operation required at each element.

All things considered, researchers often find it difficult to directly compare the
performance of finite element and boundary element simulation packages because their
only practical similarity is that both are seeking discrete representative solutions to
Maxwell’s equations. The methods by which each algorithm pursues that goal are so
fundamentally different that direct comparison is difficult, but it is generally recognized

that specific advantages do appear for both techniques under certain circumstances.
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BEM SIMULATION RESULTS
Integrated Engineering Software’s 3-D electrostatic design package, Coulomb v-2.6,

was used extensively to model and characterize three dielectrophoretic structures: a
dipole levitator, a quadrupole levitator and an isomotive separator. A three-stage process
was generally followed for each structure. Ideal geometric models were simulated and the
results compared with analytical prediction. Second, information extracted from the
theoretical models was used to determine voltages appropriate for biasing discrete
electrodes to approximate the analog model. Lastly, the discrete electrodes were entered
into Coulomb, biased with the boundary voltages obtained above and the simulations run
again. This three step process forms the closed loop simulator verification method:

1. the ability of the simulator to match analytical theory is confirmed

2. optimal values for a discrete implementation are obtained from theory

3. the discrete implementation’s performance is compared to theory

Dipole Levitator Simulation
In the Dipole Levitation section beginning on Page 15, the theoretical basis of a
dipolar electrode architecture was presented. The traditional approach has been to
machine a conducting tip into a rounded cone shape approximating one of the
equipotential surfaces formed by a semi-infinite line charge over a ground plane.
Experimentation based on this procedure has been used successfully to demonstrate
feedback controlled levitation and to extract dielectric information from levitated

particles such as plant protoplasts [16].
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The attention paid here to this subject seeks to devise alternative and more readily

manufacturable means for generating the axially symmetric fields required for dipole
levitation. The analysis proceeds in similar fashion to that of the prior art, except that the
semi-infinite line charge of Figure 4 is replaced by the finite line charge of Figure 7. The
cost of this modification is that the analytical voltage expression of (33) for the semi-
infinite line charge becomes much more complex in the case of the finite line charge.

This in turn leads to increased complexity in the electric field (the negative gradient of

the potential) and ultimately the theoretical dielectrophoretic force term containing V|E [2 .

Utilizing the method of images, the scalar potential function to the geometry in

Figure 7 can be expressed as the integral sum

d o Ade
V= 43
J4z£mJ(z &)? + p? _j[4,z-gm\/(z+§)2 + p? (48)

Evaluation of this integral yields

V= {(d —z+4(d-2) +p Xh+z+\/(h+z) +p )] 49)

(h-z+Jr-2+ p? Jd 4z J(d+2)? + p?)

which simplifies to that for the semi-infinite line charge (33) when the limitas d = = is

taken.

Continuing with the voltage expression from (49), and restricting the problem to the

cylindrical axis, i.e. p =0, the z-component of the electric field () is determined to be

E = —%(V[pd’ )=

2 2
A [(hd —dh )+(d-h)z2] (50)

2ze,, | z* —(h* +d?)2* +d* R
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Figure 7 — The Finite Line Charge Over Ground Model

Defining for convenience
a, = hd* —dh*
a,=d-nh
a;=h*+d’ SR
3
a, =d*h’

careful differentiation yields the z-axis gradient of the square of the electric field as

8 pr_ A a, +a,z? 20,z _( +a,2*)(42° - 2a,2)
& ° 2z, |-’ +a, | 2t a2 +a, (z' —a,z* +a,)? 52)
/12

= orle ? G rinie (2)

where Grinie(z) collects the geometric dependencies as has been done before.

Substitution of this result into (24) and normalizing to »* yields the theoretical
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dielectrophoretic force for 2 homogeneous sphere centered at height z on the vertical axis

in Figure 7:

F, A2
—f—?';=;Re[K, | e (53)

The result of (53) for a finite line charge over a ground plane takes the same form as that
for the semi-infinite line charge over a ground plane presented in (36). The two
expressions differ only in the geometric terms Grne(2) (for the finite line charge) and
G«(z) (for the semi-infinite line charge). Graph 1 shows how increasing d in Figure 7
causes the dielectrophoretic force due to a finite line charge (53) to approach that of a

semi-infinite line charge (36), as must be the case in the limit.

Before relying on Coulomb to model the dielectrophoretic response of arbitrary
discrete planar electrode geometries, the program’s ability to correctly model analytically
manageable dielectrophoretic phenomenon was to be confirmed. The first such
simulation studied the dielectrophoretic levitation force profile on a homogeneous sphere
subject to the electric field of a finite-line charge over a ground plane (Figure 7).

Initially anticipated to be a relatively simple exercise, this ‘simulator verification’
phase of the work was made dramatically more difficult by Coulomb’s inability to
correctly calculate the body force on a neutral object in a non-uniform electric field; the
fundamental precept of dielectrophoresis. A simulation was prepared demonstrating
Coulomb’s violation of fundamental energy principles, and this was used by IES to debug

the software package and produce an updated version.
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Foep vs Line Charge Length
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Graph 1 - Fpep as Function of Line Charge Length

To study the finite-line charge dielectrophoretic force profile, the ‘universe’ in
Coulomb was taken to be free-space, test particles were assigned a relative permittivity
&=4.0 and the solver was run in DC-permittivity mode. The analysis therefore neglects
particle and media conductivities (taken to be zero) and reduces the Claussius-Mosotti
polarization factor (23) to a real number.

For the dipole levitation simulations, a finite line-charge model was used in place of
the analytically simpler semi-infinite model. This was required because Coulomb does
not support objects infinite in extent. Additionally, Coulomb does not support true ‘line-
charges’, so the finite line charge was represented as two orthogonal rectangles defined
by [(8.0,k),(-8.0,h),(=5,0,d),(5,0,d)] and [(0,5,k),(0,-5,4),(0,-8,d),(0,5,d)] as

illustrated in Figure 8. These parameters were chosen to be /~200um, 4=300um and
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&~lpm. A total charge of 1 Coulomb was distributed over these two surfaces to

approximate a 100um line-charge with charge per unit length A=1.00E+04C/m. To
eliminate the need to geometrically define and element either a ‘truncated infinite ground
plane’ or an ‘image line-charge’, anti-symmetry about the z=0 plane was defined in
Coulomb. This condition mirrors all geometry across the plane of symmetry and negates
boundary conditions on the mirrored geometry, i.e. an image line-charge approximation
carrying a total charge of —1C extends from z=-4 to z=-d. The values /4, d and A define
the physical parameters required for analytical tabulation of the normalized
dielectrophoretic forces (equations (36) and (53)) on particles centered at various axial
heights z.

An individual simulation run comprised the introduction to the line-charge model of
a dielectric sphere of radius r, centered at a height z and filled with a dielectric material of
relative permittivity 4. To confirm that both the z-position and radial dependencies on
the dielectrophoretic force are modeled correctly by Coulomb, a batch analysis was run
whereby three particles of radii 2um, 4um and 8pum were translated from z=40um to
z=180um in 20um increments. At each vertical position, for each particle, the net body
force (in Newtons) acting on the particle was numerically solved for. The force values

obtained were normalized by 1/r’ and compared with the analytical prediction (53).
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Positional Dependence of Fpgp/r®
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Graph 3 — Particle Radius Extraction from Line Charge Simulation

The results of the above analysis are depicted in Graph 2 and Graph 3. Graph2isa
log axis plot of the radially normalized dielectrophoretic force. Shown in the plot are
normalized results from Coulomb for the 2pm,4um and 8um particles, the analytical
force profile for the finite-line ‘charge model and the analytical force profile for the semi-
infinite line charge model (for reference). As can be seen, the agreement between the
finite model’s analytical profile and the results obtained numerically from Coulomb are
good.

Graph 3 depicts an alternate analysis of the data whereby the force data from
Coulomb is transformed by first dividing by the radially normalized analytical value and
then taking the cube root of the result. This transformation should yield the radius (in

microns) of the test particle, and should therefore be constant for each particle at each z-
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position. Graph 3 displays the results of this analysis and confirms the validity of the

Coulomb solutions.

Having confirmed Coulomb’s ability to model the dipolar dielectrophoretic force
response for the finite line charge over a ground plane, a discrete planar electrode
geometry capable of emulating the dipolar levitation profile configuration is sought.
Figure 9 depicts the concept behind the discrete planar dipole levitator geometry. Using
the analytical solution for the voltage (33) due to a semi-infinite line charge with
A=1.25x10°C/m at a height #=510um over a ground plane in free space, the potential
was computed at 20 points defined by

[p,z] =[50 am + n*1001m,500 zm] for n=0..19 (54)

(b) Planar Ring Model

Figure 9 - Discrete Planar Representation of Cone-Plate Dipole Levitator
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Geometry consisting of twenty quarter circles centered at [0,0,500£on] with radii

matching the p co-ordinates set out in (54) were entered into Coulomb. The thickness, or
line-width, of each of these quarter circles were 50um. The circles were confined to the
quadrant defined by (x>0, y > 0). Voltage boundary conditions were assigned to each of

the quarter circles such that the boundary voltage on a particular arc was the voltage

Figure 10 - Coulomb Model of Discrete Planar Dipole Levitator

predicted by theory at the center of that node’s S0um width. Symmetry was then defined
about the x=0 and y=0 planes, while anti-symmetry was defined about the z=0 plane.
Under these conditions, the overall system effectively becomes twenty concentric rings

centered at [0,0,5001m)] carrying positive voltage boundary conditions and a set of
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twenty image rings located at z=-500um carrying the opposite voltage boundary

conditions.

To test this structure’s ability to emulate the dielectrophoretic force profile of the

Discrete Planar Dipole Levitator Performance
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Graph 4 - Discrete Planar Dipole Levitator Performance

semi-infinite analytical model, a test particle was introduced into the geometry. A 10um
radius spherical test particle with relative permittivity 6.9 is centered along the z-axis and
translated from a center height of 30um up to 480um. At each height, the solver was run
and the net body force acting on the sphere was computed. It should be noted that with

the symmetry conditions defined, the spherical particle was represented in the geometry
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as only the portion of the total sphere residing in the quadrant (x>0,y>0). Consequently,

to get the representative force on the total sphere, the drawn % sphere was selected and

Coulomb was instructed to also include the three image segments located around the z-

Figure 11 - Enhanced Discrete Planar Dipole Levitator

axis in the force calculation. The negative image sphere existing below z=(0 was not
included as, by symmetry, the net force on the upper sphere and it’s image would be
zero. The total geometry drawn in Coulomb is illustrated in Figure 10 where the twenty
concentric Y4 rings are visible converging above the Y spherical test particle.

In Graph 4, the results of this parametric analysis are presented whereby the
performance of the discrete planar electrode configuration generally agrees well with the
analytical model from which it was derived. However, the deviation between the two

devices does become extreme in the region approaching the surface of the planar
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electrodes. As this is presumably the region where feedback assisted levitation may be

performed, this defect is of concern and needs to be addressed. A modified simulation
was run whereby the inner two rings were replaced by 10 rings of 8um line width spaced
17.5um apart (center-to-center) as shown in Figure 11. This data, also portrayed in
Graph 4, shows the effect on the force profile over the region of interest to now be
compliant with the theoretical prediction. Lastly, a simulation was run with all of the
periphery rings removed and only the dense inner ten rings added in the previous
simulation. The data indicates that this too approximates the analytical model relatively
well, but additional work would need to be performed to further characterize these

structures for additional factors affecting levitation; e.g. radial stability.

Quadrupole Simulation

While mechanistically more complex than dipolar dielectrophoresis, multipolar
dielectrophoresis has been rigorously examined theoretically [2,3,13] and some
experimental verifications have been undertaken [10]. As a diagnostic tool, quadrupole
levitation offers researchers insight into the detailed electrical composition of materials.
A test particle trapped in the quadrupole field may be passively levitated at a height
determined by the electrical properties of the media and the particle, particle geometry
and non-linearities of the applied electric field.

To address the issue of quadrupole simulation, an approach similar to that used for

the dipole levitator simulation was adopted. In the case of the quadrupole however, a
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more precise representation of the analytical structure is possible in Coulomb, four

spheres of radius 0.5pum were placed at

[(250 1m0,0), (0,250 22m,0),(—250 1m,0,0), (0,-250 zm,0) ]
in a ‘universe’ filled with water of permittivity 80; this geometry is that illustrated in
Figure 5 on page 17 with b=250um. The spheres located on the x-axis each had imposed
a total charge of -1C distributed uniformly over their surfaces. Conversely, the two
spheres located on the y-axis each received a total charge of +1C uniformly distributed
over their surfaces. Five test particles of relative permittivity 4 and radii Spm, 10um,
15pum, 20pum and 25pum were individually positioned in the structure along the z-axis at

heights ranging from: 5-30pm in Spm increments and 30-300um in 10um increments.

Positional Dependence of 1™ Order Quadrupolar Force
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Graph S — Positional Dependence of Quadrupolar Levitation Force




40
As with the dipole simulation, Coulomb was run in DC-permittivity mode to eliminate

conductivity and reduce the polarization factor (X;) to a real number. The net body force
acting on the test particle was computed for each z-location.

Analysis of the results from this parametric run first set out to verify Coulomb’s
ability to demonstrate the r’ dependence predicted by the multipolar moment method in
(38). Force data produced by Coulomb was transformed by 1/, normalized to the peak
analytical force and plotted in Graph S against the z-height normalized by the parameter
b. Coulomb’s force data clearly confirms theoretical predictions. Both multipolar
moment quadrupole theory and the Coulomb simulator are confirmed by these results.

An alternate interpretation of the data is similar to that used in the ‘finite line charge over
ground’ dipole force simulation; namely radius extraction. Parametric data obtained from

Coulomb was first divided by the radially normalized theoretical force and the 5% root of

Quadrupole Particle Radius Extraction
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Graph 6 — Particle Radius Extraction from Quadrupole Simulation
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the result was taken. This is in contrast to the cube root operation required to perform

radius extraction from dipolar dielectrophoresis data. The constancy of this
transformation throughout the z-axis range, as illustrated in Graph 6, strongly supports
multipolar moment quadrupole theory once again.
Isomotive Simulation

Verification of the isomotive structure by simulation proceeded slightly differently
than the methods used for the cone-plate and quadrupole geometries. In the two latter
cases, the existence of a free charge analog model allowed for nearly exact geometric
representation in Coulomb. The isomotive electrode structure, on the other hand, stems
from purely mathematical roots whereby the following condition is enforced:

E -VE = Constant (55)

An electrostatic potential expression which satisfies the above relationship is obtained
analytically and used to define equipotential surfaces capable of sustaining the isomotive
relationship. This scalar potential field is infinite in extent, and no simple finite charge
model exists which would allow precise representation in a bounded geometry simulator.
Nevertheless, the methodology for deriving the discrete electrode geometry and the
means by which it is tested are very similar to the method already performed for the ring
dipole levitator. How they differ is that the simulator is not used to characterize an
analytical model (because none exists), but rather the discrete isomotive structure is

compared to an analytical expectation directly.

As an aside, the isomotive field structure would be more simply represented in

Electro (the 2D analogue to Coulomb), but this package was not made available to our
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facility. Using a 3D simulator to model a 2D problem requires an arbitrary truncation of

the infinite third dimension and would be a source of edge effect errors at the peripheries
of the model. As this is presumably not a region in which dielectrophoretic separation
would be sought, the significance of this degradation may be minimal.

Recalling equation (45) which defines the equipotential surfaces in the isomotive
structure, and considering this potential field as a 2D field, the potential at a discrete set

of N points (p,) defined by

D, =X, +(n-1)X_,h) (56)
where

1<n<N

X, = First point

X, = Electrode spacing
h => Vertical position.

The electric potential at each of these points can be obtained from (45) through the

transformations

r, =X, +nX )? +1?

h J (58)

6, = atanf —————
(X,,+nX,

The set of voltages [V,] may be used to emulate the isomotive field when used to bias a
set of N coplanar electrodes spaced apart by X; vertically mounted by a height 24 over an

identical set of electrodes biased at the set of potentials [—-V,].
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The Coulomb geometry used to represent the discrete isomotive structure is shown in

Figure 12. The designation of anti-symmetry about the z=0 plane simplified the geometry
in that only the upper set of electrodes needed to be drawn and discretized into elements.
The length of each electrode was taken to be 3mm long, and all force computations were
carried out at the midline to minimize truncation edge effects. As was the case when
modeling a finite line charge over a ground plane, anti-symmetry essentially defines the

image conditions necessary to induce an infinite ground plane. To utilize the structure of
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Figure 12 — The Discrete Planar Isomotive Electrode System

Figure 12 as an isomotive separator, the structure is mounted vertically, and a particle
stream is injected into the structure from the top at point x; in Figure 12. A polarizable
particle entering the isomotive structure at this point will be forced in a direction parallel
to the x-axis. To characterize this discrete isomotive model, a hemispherical particle is
positioned with its circular flat flush with the z=0 plane as illustrated in Figure 12. The
particle is parametrically translated from left to right in Figure 12. At each position, the

3D solver is run and the net force acting on the hemisphere (and its image) is computed.
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This force is equivalent to the net force that would be exerted on a spherical particle

centered at (x; 0) along the midline between a pair of anti-symmetrically biased discrete
electrode sets.

The resuits of the parametric coulomb simulation are presented in Graph 7. The
vertical axis is the simulated force normalized by the expected isomotive force; Fsou in
(44). An exact representation of the isomotive structure would have yielded a flat line
throughout the structure at 1.0 in Graph 7. As can be seen from Graph 7, the discrete
planar structure is isomotive at the prescribed force magnitude throughout the central
region of the device, but isomotive behavior breaks down at the device edges where

fringing fields due to truncation distort the isomotive field.

Planar Isomotive Electrode Force Profile

FCaulomJFmaary

x position (um)

Graph 7 - Normalized Discrete Isomotive Force Spectrum
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EXPERIMENTAL WORK

Experimental studies performed over the course of the project were aimed at
validating multipolar moment quadrupole theory. Discrete planar quadrupole chips were
fabricated, boundary element simulation was performed to model the planar devices and
an opto-mechanical chamber was designed to house the quadrupole chip for cross-plane
observation. To verify analytical quadrupole theory, an experimental quadrupole force
profile (similar to that in Graph 5) and an experimental demonstration of radius
extraction (as in Graph 6) was sought. The arrangement of the various laboratory
components used during experimentation is shown in Figure 13.

The Discrete Planar Quadrupole Device

To experimentally study multipolar moment quadrupole theory, the discrete planar

Figure 13 - Laboratory Equipment Arrangement




46
quadrupole device of Figure 14 was fabricated at the Alberta Microelectronics Center in

Edmonton, AB. Shown in the figure are the dimensions of the quadrupole region as well
as the overall chiplet size. The substrate was 500pum thick glass upon which unpassivated
chrome-gold electrodes were patterned. This electrode configuration seeks to emulate the
point-charge quadrupole arrangement. While an analytical solution exists for the point
charge topography, physical implementation is not attainable. Two steps were required to
experimentally characterize the discrete planar quadrupole. First, an analytical point-
charge model capable of adequately representing the discrete planar quadrupole was
sought. Secondly, an experimental force profile was gathered through lgvitation
experiments to enable the key predictions of multipolar moment quadrupole theory to be

tested.
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Figure 14 - AMC Quadrupole Chiplet
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Numerical Modeling of the Planar Quadrupole Device

To address the degree to which the discrete planar quadrupole emulates a point-
charge quadrupole, boundary element simulation was employed to determine the
dielectrophoretic force on a variety of spherical objects parametrically translated through
a range of heights above the center of the discrete planar quadrupole surface. From a
qualitative point of view, the force profiles for the discrete planar quadrupole must mimic
those of the analytical solution of Graph 5, Page 39. The results of this analysis are
shown in Graph 8, and it can be seen that Coulomb does predict a similar profile. The

radii of particles used in this simulation ranged from S5um to 40pum and the particles were

centered at vertical positions between Sum and 250um above the surface.

AMC Quadrupole
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Graph 8 -Discrete Planar Quadrupole Force Profiles
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To this data, an equivalent point charge quadrupole was then fit with the motivation

being that a simple analytical prediction of the physical device's dielectrophoretic force
profile would be useful when correlating experimental data to theory. To find this
optimal equivalent quadrupole, the following procedure was used. A Coulomb
simulation was first run on the discrete planar electrode geometry biased at £1V with a

1pum radius particle of permittivity 6.9 translated from Sum to 250um above the center of

Analytical Representation of Discrete Quadrupole
for 1um radius Spheriglass
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Graph 9 - Point Charge Representation of Discrete Planar Quadrupole

the quadrupole region. At each height, the electrostatic solver was run and the body force
on the particle was numerically computed. Optimization of the parameters 5 and q in the
point charge quadrupole force equation (38) was now possible. Increasing b (moving the
charges farther apart) has the effect on the force profile of both decreasing the peak force
value and shifting its location to a higher vertical position on the z-axis. The point charge

spacing (b) is adjusted to align the maxima of the equivalent analytical force profile with
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Figure 15 - The Equivalent Point Charge Quadrupole

that produced by Coulomb simulation. The charge magnitude (g) is then set to equate the
maxima of the analytical prediction to the maximum value yielded by Coulomb.

By this method, the optimal value for b was determined to be 124um with a g value
of 2.76x10"*Coulombs. The result is an equivalent point charge quadrupole that closely
matches the discrete planar quadrupole’s dielectrophoretic force profile at 1V bias. The
numerically obtained Coulomb data and the analytical fit to that data are plotted together
in Graph 9 to demonstrate their close agreement. Figure 15 demonstrates the physical
relationship between the equivalent point charges and the discrete planar electrodes
which they model. The analytical fit to boundary element simulation data now offers a

reliable benchmark for the experimental data.
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Discrete Planar Quadrupole Chamber Assembly

Having characterized the discrete planar electrode system through boundary element
method simulation, experimental demonstration of the results was sought. To achieve
this goal, a chamber able to deliver particles into a horizontally viewed active quadrupole
region was needed. A horizontal viewing architecture was required to allow for precise
measurement of the vertical displacement during levitation. A variety of chamber
designs were built and tested for their ability to meet this surprisingly difficult
specification. The fruit of this design effort was the quadrupole fluid integrated circuit
chamber of Figure 16. As will be demonstrated, the final system performed very well,
although areas for future improvement were identified.

Assembly of the lead carrier assembly proceeded as follows. A glass spacer (2.5mm

thick) was bonded into the lead carrier’s die well using Dow Corning’s Silastic® brand

Particle Injection Port

/ Micropump Port

Chamber Body.

Fill/Flush Po \

Microtubule

| Quadrupole Chiplet
Rear Viewing Window__ [ Bond Wire

il ls,alsl FH Iq,% l I | : \;_40pin IC Carrier
Glass Spacer

Figure 16 - Quadrupole Fluid Integrated Circuit Chamber - Front X-Section
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adhesive sealant. The quadrupole chiplet (Figure 14, Page 46) was subsequently bonded

on top of the spacer so that the active quadrupole region was over the center of the lead
carrier’s die well. Circuit Works 2400 Conductive Epoxy was used to electrically
connect the four quadrupole chiplet pads to the die well’s corner bond-pads (package pins
6,15,26,35).

The chamber housing itself was machined out of Lucite plastic. The horizontal
viewing holes were sealed with glass coverslips epoxied onto the inner surface of the
chamber cavity. The inner surface was chosen so as to prevent air bubbles from
becoming trapped in the recession that would have otherwise existed. Throughout early
experimentation, air bubbles in the system were identified as extremely disruptive to
desired chamber operation and extensive steps were taken subsequently to prevent their

formation.

Electrode A Ehsctrade B

1000 m

Electiode D

Microtubule

Openmg

Figure 17 — Optical View for Chamber Housing Alignment
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The particle injection microtubule (Imm outside diameter; ~150pm inside diameter)

is bonded into the vertical shaft drilled into the upper surface of the milled chamber
cavity. The microtubule is recessed into the shaft deep enough to leave approximately a
500um gap between the tapered tip of the microtubule and the surface of the quadrupole
chiplet. The proximity of the microtubule’s tip to the to the quadrupole substrate was
necessary for hydrodynamic particle manipulation via the quadrupole fluid circuit.
Having now separately assembled these two pieces, the chamber housing needed to
be precisely positioned over the 100pum central quadrupole region and bonded into place.
To achieve this, the lead carrier assembly was inserted into a socket mounted on a
standard microelectronics probe station. Silastic® sealant was applied to the bottom
surface of the chamber housing and the housing was then placed over the lead carrier so
the quadrupole chiplet recessed freely into the chamber cavity. A tight seal would be
formed around the perimeter of the die-well once the sealant had been allowed to cure.
Prior to the adhesive fully curing, the probe station’s vertically oriented optics are used to
locate, through the 150pum microtubule opening, the center of the discrete planar
quadrupole region. The housing is carefully adjusted until the tips of the four quadrupole
electrodes are each visible through the opening in the microtubule. At this point the
particle injection microtubule is centered directly above the active quadrupole region.
The adhesive used allows for a few minutes of chamber mobility while the quadrupole
region is located (optically) and the chamber housing is adjusted (by hand). A snapshot
taken through the probe station optics during chamber system assembly is shown in

Figure 17 in which the tips of the 4 gold electrodes can be seen in the central region.
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Once the adhesive has been allowed to fully cure, 4mm long 16 guage needles were

epoxied into the chamber’s three primary fluid ports completing the mechanical
assembly. These needles maintain the chamber’s fluid seal and provide effective means
for connecting the quadrupole chamber to the dielectrophoresis fluid circuit of Figure 18.
Setup of the Experimental Fluid Circuit
An important element of the experimental system turned out, in the end, to be the
fluid circuit. Its impact on particle delivery, bubble elimination and experimental
repeatability was of paramount importance to the success of the project. Early chamber
designs were primarily plagued by seal related problems, effectively rendering them
useless. Second generation chamber designs, while having addressed tﬂe sealing
problem, met with failure for their awkwardness pertaining to establishing electrical
contact and particle injection. The union of the IC lead carrier assembly with the fluid
circuit virtually eliminated all of the aforementioned problems:
e sealing the chamber was straight forward and reliable
e the IC lead frame provided a simple and robust mechanism for electrically
contacting the quadrupole chiplet
e the mechanical microscope stage was easily modified to include a 40-pin DIP IC
socket making repeated chamber insertion and removal straight forward
¢ the chamber housing with its precision aligned injection microtubule made
delivery of particles into the quadrupole region simple.
The final steps to prepare the system for use were connection to the fluid circuit and
filling. At the heart of the fluid circuit of Figure 18 is the fluid integrated circuit chamber

(detailed in Figure 16). Four ports interface to the fluid circuit: two directly through
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valves 1 and 2, and two more splitting from the 3™ chamber port via a 3-way stopcock.

Tubing connected to valve 2 and stopcock ports A & B all are terminated with millipore
microparticle filters immersed in the bulk source reservoir. Tubing connected to valve 1
is routed through a Gilson Minipuls-2 bidirectional peristaltic pump which returns fluid
to the waste reservoir through a funnel filter.

To fill the chamber, a procedure similar to that outlined below must be followed.
Valves 1 and 2 are opened with valve 3 closed and the Gilson pump is allowed to draw

from valve 1 (the Fill/Flush Port in Figure 16). Once the tubing which sources valve 2
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Figure 18 — Experimental Fluid Circuit
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has been primed with fluid from the bulk reservoir, valve 2 is closed and valve 3 is

opened with the stopcock set to connect one of its ports to valve 3. Once the first
stopcock source tube has been primed, the stopcock is switched to the neighboring
position to allow the second stopcock tube to be primed. With the chamber now in hand,
the elimination of bubbles from the various tubings and the inner chamber cavity can be
done within minutes in a fashion similar to the removal of bubbles from a partly filled
syringe. Various permutations of the above cycle may need to be repeated to eliminate
all the system bubbles, but once purged, the closed hydraulic system was very resistant to
bubble formation.
Particle Capture

For experimentation to proceed, stopcock port A is isolated from valve 3 and a
droplet containing a small number of particles is introduced through the top of stopcock
port A. A hose clamp temporarily pinching the source tube to stopcock port A allows the
tubing to be removed at port A, a small amount of fluid (containing test particles) to be
injected and the hose connection to again be made to stopcock port A without
jeopardizing seal integrity. Valves 1 & 3 are then opened, and valve 2 closed. The
stopcock is set to connect port A to valve 3, and the pump is enabled at a its lowest flow
rate (~10uL/min) to assist the migration of the injected particles down the injection tube
and into the quadrupole region. Determining when particles have reached the quadrupole
region is accomplished by monitoring the image from the Javelin video camera mounted
to the microscope. The placement of the chamber in the microscope’s primary optical
path is shown in Figure 19. Once a particle has emerged from the tip of the microtubule,

the pump is switched off and all three valves (1,2 & 3) are closed to completely isolate
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Figure 19 - Quadrupole Chamber Mounted in Optical System

the interior chamber from external disturbances. A bit of patience, a touch of luck and a
much practice enables the particle injection system to perform very well: particles can be
captured and flushed from the system via the fluid circuit quickly, reliably and

repeatably.

Hydrodynamic Particle Rolling
Images obtained by the microscope’s view of the inner chamber were captured by
the video camera and fed directly to a black and white tabletop monitor to serve as
feedback during the particle capturing phase of the experiment. Often a particle could be

seen to have entered the chamber only to fall to the substrate outside of the quadrupole






58

Figure 21 - Fluid Circuit Hydro Dynamics

Levitation Data
Once a particle has been delivered into the quadrupole region, levitation data

including the applied voltage, particle radius and levitation height could be collected.
Instrumentation, electronics and measurement equipment used included the following:

@ Data Precision 3500 R.M.S. meter

o Hewlett Packard 8116 Function Generator

@ [eitz-Wetzlar Inverted Microscope

@ Javelin JE2362A TV Camera

@ Matrox MVP-AT Image Processor Card
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e High Voltage Regulated Power Supply (Heathkit Model IP-17)

e Biorad Model 1710 Gradient Monitor
e 4 Output Dual Phase Amplifier Board
These items are identifiable in Figure 13 on page 45.
Figure 22 (a, b & c) depict three sample images typical of those attained during
levitation experiments on polyethylmethacrylate beads. In these images the electrodes
are visible in cross section below and to both sides of the trapped particle. Recall the

optical system is looking across the short axis of the quadrupole chiplet of Figure 14

© Y
Figure 22 - Typical Levitation Images (a-c) plus 10um Scale (d)
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(Page 46). These images were captured using the Matrox image processing equipment

and Figure 22d (a geometric scale in 10um divisions) was superimposed on the particle
images to allow vertical height information to be measured.

As stated previously, the goals of the quadrupole levitation experiments were to
demonstrate an r° dependence in the quadrupole force as predicted by multipolar moment
quadrupole theory and to demonstrate the utility of boundary element simulation as a tool
for dielectrophoretic system design. To achieve these goals, two species of particles were
used: Spheriglass® Soda lime beads from Potters Industries and polyethylmethacrylate
beads from Bangs Laboratories. The physical specifications of these particles are given in

Table 1.

Material
Spheriglass |Methacryiate
& 6.9 275
K, (in water) -2.88 -3.15
Sy(kg/mr’) 2200 1100

Table 1 - Properties of Levitated Particles

All experiments were carried out with sinusoidal voltages at 100kHz. In the section
dealing with the boundary element simulation results, it was mentioned that all
simulations were run in DC-static permittivity mode. While the dielectrophoretic
polarization phenomenon is a frequency dependent effect, the present capabilities of
Coulomb to compute an electrical body force is limited to the DC case. While this is a
shortcoming in the capabilities of the present simulator version, it was aptly suited for

studying the characteristics of homogeneous spheres in ultra low conductivity media.
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Water deionized with a NANOpure® filtering system was used, and the media

conductivity was consistently observed between 1.5-2.5uS/cm.

On data collected from several particles of both species, two fundamental
transformations were repeatedly performed to fit the experimental data to theory. The
first transformation sought to produce the theoretical quadrupole force profile from the
experimental data. For each particle observed, the density of water, the density of the
particle and the particle’s radius (measured optically) were used to compute the net
gravitational force on the sphere. At any stable levitation point, this force must be equal
and opposite the dielectrophoretic force being applied by the electrode system. At any
point of levitation therefore, the magnitude of the dielectrophoretic force could be taken
to be constant and equal to the net gravitational force (taking buoyancy into account).

Varying the applied voltage had the anticipated effect of altering the height of stable
levitation, but normalization for this voltage dependency is possible by dividing the
known levitation force by the square of the applied rms voltage. The resuitant should be
the dielectrophoretic force that the observed particle would experience when manually
placed at the same points through the vertical region of interest with the quadrupole
biased at a constant +1 V.

An additional factor expected to affect the force profile is the radius of the particle to
the 5" power. To thereby normalize the experimental data obtained from particles of
several different radii, the voltage normalized force data from above is further
transformed by dividing the radius (in microns) to the st power into each of the voltage
normalized force values. The experimental radius was measured optically using the

geometric scale of Figure 22d. This data, now normalized for voltage and radius, when
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plotted against the vertical height should match the theoretical dielectrophoretic force that

a 1um radius particle of the same material would experience if translated through the
same vertical region over the discrete electrode quadupole biased at 1V . A force

profile such as this was previously acquired via boundary element simulation and was
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Graph 10 - Normalized Experimental Spheriglass Force Profiles

used to derive the point charge quadrupole configuration best fitting the discrete planar
profile.

In Graph 10, the normalized levitation data for seven Spheriglass particles, ranging
in radius from 26.5um to 35.2um, is plotted along with the £1V, 1um force profile
expected from the equivalent point charge quadrupole. The agreement between the

normalized data and the theoretical prediction in Graph 10 suggests that multipolar
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moment quadrupole theory is indeed sound and also stands to validate the the boundary

element technique used to model the discrete planar quadrupole.

Another key observation pertaining to Graph 10 is that no particles were observed
levitating below approximately 35um as would be expected. Points along the theoretical
force profile between z=0 and the height of the force maxima are not capable of stable
levitation. In the absence of a negative feedback system, particles in this region
experiencing a force sufficient to overcome the force of gravity would find themselves
raised past point of the force maxima. The particles would reach a passively stable
levitation point on the downward sloping section of the curve where the dielectrophoretic
force exactly balances the gravitational force.

Another informative way to view the Spheriglass levitation data is to subject the
data to a radius extraction transformation. Radius extraction was first used on the
boundary element simulation data to attempt to verify the 7’ dependence of the
quadrupole’s dielectrophoretic force. This method begins by taking the net gravitational
force exerted on the object as being equal to the dielectrophoretic force at any point of
stable levitation. Then, for each data point, the anticipated force on a 1um Spheriglass
particle at the same vertical position is calculated by scaling up the characteristic 1V,
1pum curve by the square of the applied voltage as per Equation (38). This yields the
force expected on a 1um particle positioned at the observed height with the quadrupole
biased at the observed voltage. Next the net gravitational force on the observed particle

is divided by the corresponding expected dielectrophoretic force on a2 1um particle, and
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the 5™ root of the result is taken. Ideally, the results plotted against the z-axis location

would be a set of flat lines at the radii of each of the particles observed.

Spheriglass Radius Extraction
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Graph 11 - Spheriglass Experimental Radius Extraction

This radius extraction transformation on the Spheriglass levitation data is
presented in Graph 11. While the curves are not exactly flat, they do confirm the
existence of an ° dependence in the observed data. During levitation of the Spheriglass
particles in particular, due to their high density, the voltages required for levitation
reached the limits of the amplifier. At these voltages, fluid turbulence presumably due to
conductive heat generation between adjacent quadrupole electrodes was visible. Such
fluid disturbances would presumably have created an upward fluid flow acting to assist
the dielectrophoretic force in levitating the particle. Particles therefore observed
levitating at slightly higher levels than the observed voltage and radius would have

predicted would have occurred. The above radius extraction algorithm applied to
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particles being subjected to such fluid assisted levitation would predict radii slightly

greater than the observed value, as tends to be the case in Graph 11. Additionally, the

fluid turbulence was observed to be stronger for higher voltages. This would support the

upward sloping tendency of the radius extraction curves for particles levitated at greater

z-heights requiring greater applied voltages and therefore stronger fluid turbulence.
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Graph 12 - Normalized Experimental Polyethylmethacrylate Force Profiles

In a manner identical to that for the Spheriglass particles, levitation data for a set of

polyethylmethacrylate beads was gathered and similarly processed. These beads, much

less dense than the heavier Spheriglass beads, allowed for levitation about a much greater

vertical range. Graph 12 depicts the results obtained after normalizing the levitation data

to the £1V, 1um force profile where it can be seen that levitation in the tail of the profile
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was attainable. This transformation and the radius extraction data of Graph 13 provide

additional evidence suggesting that multipolar moment quadrupole theory is in fact valid.

r(pm)
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Graph 13 - Polyethylmethacrylate Experimental Radius Extraction

Sources of Error
While the experimental data was sufficient to lend evidential support to multipolar
moment method quadrupole theory, some comments pertaining to experimental error are
justified. For the Spheriglass particles in particular, the largest anticipated sources of
error arose from two factors: power amplifier distortion at high voltages (leading to
potentially questionable rms voltage readings), and thermal disturbances in the media due
to these high voltages generating Joule heating in the media (resulting in upward

convection). At higher applied voltages, the linear region of the amplifier used to
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amplify and invert the signal generators input began to show signs of distortion whereby

deviations from pure sinusoidal appearance were evident when observed on an
oscilloscope. The effect was not destructive to the levitation phenomenon, but an
amplifier capable of reliably producing more stable sinusoidal voltages throughout the
amplitude range required would have been beneficial. As for Joule heating, the
Spheriglass radius extraction data demonstrated less stability than that for the
polyethylmethacrylate beads. The latter beads, being much less dense and slightly more
polarizable (larger K value), could be levitated at identical heights as same-sized
Spheriglass particles, but with much lower voltages. With less voltage being applied, less
heating would occur and convection disturbance effects would similarly be reduced. This
supports the more stable radius extraction results obtained for the polyethylmethacrylate
beads.

At higher voltages, the dual phase amplifier used to create the inverse quadrupole
voltages began to demonstrate slight imbalances in the measured rms voltage between the
two phases. Identified late in the experimentation phase, the problem was not addressed
numerically, and remains as an issue that should be considered in any future work. It is
suspected that the imbalance would result in an optimal equivalent quadrupole not
entirely charge balanced, but rather exhibiting a slight offset (AQ) between the two
polarities of charges in the point charge model, but such an imbalance was not
characterized numerically to address its effect.

Vertical height measurement, another possible source of error, was minimized
through the establishment of the horizontally viewed levitation environment. Prior art

[10], reported a quadrupolar size effect from a vertically aligned optical system
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positioned over an active quadrupole region. Detecting vertical displacements this way

would be much more prone to errors. The horizontally viewed system in the present
work allowed for reliable detection of the particle’s centroid position easily. Early
experiments however, prior to the final implementation of the experimental fluid circuit,
suggested that stable levitation was occurring in the region of the force characteristic
predicted by theory to be unstable. As was learned, this offset was determined to be an
optical effect due to the method used to determine the zero-height reference. With the
introduction of the experimental fluid circuit, the substrate in front of and behind a
levitated particle was easily kept free of obstruction due to other particles. Consequently,

the reliability of the vertical displacement data was greatly enhanced.
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CONCLUSIONS
Summary of Accomplishments

Numerical simulation and experimental observation on model particles have been
united to offer strong evidence supporting the validity of multipolar moment quadrupole
theory. The design, construction, assembly and test of a discrete planar electrode
quadrupole chamber facilitated the experimental verification of this theory by confirming
the predicted size dependence on the quadrupole force characteristic. The perilous step of
putting one’s faith in a software simulator has been made more certain through the
application of a triple stage verification procedure: numerical simulation of analytical
theory, numerical simulation of discrete planar approximations and experimental
verification confirming the equivalence of all three.

An effective fluid integrated circuit system was developed which allowed for flexible
and reliable particle manipulation to and from the enclosed electrode system. The system
was built around a standard integrated circuit lead frame. It offered an excellent
mechanism for making electrical contact with the outside world. A reliable fluid seal was
easily achieved while maintaining the ability to dynamically fill the system, inject
particles, levitate particles and subsequently flush the system. The need to perform time
consuming chamber disassembly, cleaning, reassembly, and refilling was minimized as
uninterrupted cleaning procedures were made possible via the experimental fluid circuit’s

various pumping capabilities.
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Figure 23 - Discrete Planar Isomotive Chip

Although not experimentally characterized at the time of publication, the discrete
planar isomotive structure characterized numerically in the present work was fabricated

at the Alberta Microelectronics Center. Results are expected in the coming months on the

Figure 24 - Isomotive Separation Chamber
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ability of the device to separate species of biological cells according to their frequency

dependent polarizabilities. The planar device, shown in Figure 23 is paired with an
identical device biased with voltages of opposite polarity and housed in the chamber
system of Figure 24. The system fully integrates fluid and particle delivery, observation
windows and electrical biasing.
Problems Encountered

As stated, a primary goal of the work was to demonstrate the validity of boundary
element simulation techniques to the characterization for theoretical modelling of discrete
electrode configurations. Initially, this phase of the work was hindered by an algorithmic
bug in the Coulomb software whereby the magnitudes and directions of electrical body
forces calculated by the program were in disagreement with fundamental electrostatic
theory. Considerable effort was put to addressing this problem and working with the
creators of the program (Integrated Engineering Software, Winnipeg) to resolve the
problems. The program was eventually corrected and extensive boundary simulation of
the discrete planar dipole, quadrupole and isomotive structures were undertaken. The
performance of the simulator was, in the end, exemplary within a particular scope. That
scope is limited to the case of DC permittivity analysis only. In the case of media and
particles possessing non-zero conductivities, the frequency dependent nature of the
dielectrophoretic phenomenon cannot be handled by Coulomb in its electrical body force
calculations. Similarly, conductivity contributions due to ionic concentrations presently
have no means for representation in Coulomb. It is therefore impossible to address issues

such as electrode polarization effects with the current simulator.
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Unrelated to the simulation problems, mechanical difficulties involved in achieving

horizontal viewing of quadrupole levitation was underestimated. A total of three
permutations of chambers were designed, built and unsuccessfully tested before the
integrated circuit lead frame carrier was adopted into the design along with the precision
aligned particle injection microtubule. The latter configuration, coupled to the external
fluid circuit, allowed for quality experimental results to be obtained. Regrettably, the
timing of this experimental setup’s completion left enough time only to characterize the
effect of the planar electrode quadrupole on homogeneous spherical particles in ultra-low
conductivity media. That scenario, fortunately, is the same scenario manageable by the
boundary element simulator. Consequently, the original goal of correlating analytical,
numerical and experimental data was achieved.
Directions for Future Work

As mentioned, the boundary element simulation tool (Coulomb) lacks the
computational ability to tackle applications representative of microbiological systems.
Recent work by Dr. R. Paul and Dr. K.V.I.S. Kaler at the University of Calgary have
begun to address the effects of ionic media on dielectrophoretic behavior. Their work,
termed electrode polarization, is a Green’s function methodology similar to the
fundamental algorithm of the boundary element method. Admittedly, the development of
a full-featured 3D electrostatic simulator similar to Coulomb, but possessing the ability to
handle AC frequency, conductivity and electrode polarization effects in its force
calculations would probably not be feasible. However, a collaborative effort between the
staff at Integrated Engineering Software and the theoreticians at the University of Calgary

may be feasible whereby theoretical work pertaining to electrode polarization
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phenomenon is integrated into the existing Coulomb solver. The result would be a

profoundly more capable product for Integrated Engineering Software to market and the
availability of a powerful tool for dielectrophoretic researchers to use in modelling
increasingly complex dielectrophoretic biological particle processors.

To offer experimental validation to such an effort, characterization of the discrete
planar quadrupole levitation system with its demonstrated ease of operation and reliable
ability to measure levitation profiles should be continued. While possibly requiring
insulating passivation of the electrodes in the presence of highly conductive biological
media, horizontal quadrupole levitation of biological cells should be performed to study
their frequency dependent dielectrophoretic responses. Similarly, the discrete planar
quadrupole may prove to be a valuable tool for experimental study of electrode
polarization phenomenon at lower frequencies in the negative DEP spectrum of
biological cells. Again, for this work to proceed, numerical methods able to model the
hypothesized electrode polarization effect for the discrete planar electrode geometry must
first be developed.

The emergence of microelectromechanical systems (MEMS) methodologies in
recent years have been dominated by passive structures. In many cases this has been due
to the difficulties of maintaining traditional microelectronics function throughout the
course of many MEMS processing cycles. Many chemicals used to etch channels and
holes end up making sacrificial layers out of insulators and metals required for a
conventional integrated circuit function. Leaders in the MEMS arena must inevitably
confront these issues if the technology is to permeate the world of consumer and

industrial electronics.
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This work was not meant to pioneer those breakthroughs in MEMS technology that

will allow fluid integrated microcircuits with on-board electrode biasing networks to
become an immediate reality. Instead, methodologies and motivations for preparing
dielectrophoretic applications in advance of that day were concentrated on. Planar
surface elecrode arrays with underlying field programmable active bias networks would
enable devices to dynamically reconfigure their dielectrophoretic function for the
particular task at hand. A planar processor may take on an isomotive appearance to
migrate particles across the substrate to a desired location. The field topography may
then adapt itself into a quadrupolar configuration thereby allowing particles to be raised
from the surface for subsequent capture by fluid systems on different vertically stacked
levels.

While such systems are not possible with the present state of technology, one device
which would inevitably find its way into such highly integrated systems is within reach
today, and would be well worth experimental study. The MEMS quadrupole injector
system illustrated of Figure 25 requires only single layer metalization of the discrete
planar quadrupole electrode pattern onto a silicon substrate through which a central hole
has been chemically etched. As was discussed, many of the difficuities associated with
the quadrupolar levitation in the present work were eventually solved by the relatively
complicated combination of the particle injection system and the experimental fluid
circuit. A much more elegant mechanism for particle injection would allow the particles
to precisely enter the quadrupole region not from above the plane of the quadrupole, but

directly through the substrate from below.
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\Parﬁcle
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Flow

Figure 25 — Proposed MEMS Quadrupole Injection System

Alternatively the device could be used in a top-loading particle configuration (as in
the current embodiment), but with the chamber system modified to allow fluid to be
drawn from the sealed inner chamber out through the etched hole. Now particles entering
the chamber from above the quadrupole would be hydrodynamically focussed into the
quadrupole region and may be gated from passing through the hole in the substrate (and
hence out of the chamber) by the application of a voltage sufficient to keep them levitated
in inner chamber. The function of the device in this mode reminds one of a plunger
valve.

The scope of applications available to researchers and designers in the coming years
will be dictated largely by the rate at which advances are made in MEMS technology and
the directions in which those advances are made. As with any technology, necessity is
the mother of invention, and a continued pursuit of the experimental limits of
dielectrophoresis is necessary to ensure the field keeps pace with MEMS technology;

thereby demonstrating necessity. MEMS activity in the biological engineering sciences
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is becoming increasingly prevalent, and with that industry’s close affiliations with the

medical, pharmaceutical and microbiological industries, it is natural to expect that this

growth is sustainable and that significant rewards are attainable.
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Figure 26 - Front View of Microscope Chamber Stage
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CHAMBER STAGE SIDE ELEVATION

Figure 27 - Side View of Microscope Chamber Stage
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Figure 29 - Lead Carrier Assembly Prior to Housing Attachment
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Figure 30 - Assembled Chamber Housing
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