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ABSTRACT 

 

The boundary element method (BEM) and its use in computer-aided field analysis is presented in 

this paper. The BEM is compared against the finite difference method (FDM) and finite element 

method (FEM) for two-dimensional and rotationally symmetric problems. The advantages of BEM 

are stated for an application in high voltage power apparatus design. It is shown that BEM is 

superior to FDM and FEM, both for linear and non-linear problems.  

 

INTRODUCTION 

 

The common concept in the numerical methods is the reduction of the governing field equation or an 

equivalent integral formulation into a linear system of equations. These methods can be classified in 

two categories: the methods where approximations are to be made throughout the region B, and the 

methods where approximations are to be made only on the boundary ∂B. The finite difference and 

finite element methods belong to the first category while the boundary element methods belong to 

the second. 

 

BOUNDARY ELEMENT METHOD 

 

The methods of the second category solve a boundary integral equation formulation of the problem 

for some unknowns on ∂β ([1]. These methods not only produce precise results with far less data as 

compared to the methods of finite differences and finite elements but also cater to open region 

problems without any artificial truncation of the region and model problem geometries accurately. 

Since the approximations are done only on the boundary, the dimensionality of the problem is 

reduced by one. Furthermore, usually being bounded and often completely continuous, integral 

operators as compared to differential operators admit a wider selection of trial functions [2]. 

Direct methods in this category solve an integral equation formulation for the unknowns directly [3], 

while indirect methods solve for the source of the unknown [4]. The boundary element method 

presented in this paper is an indirect method. An equivalent source, which would sustain the field, is 

found by forcing it to satisfy prescribed conditions under a free space Green’s function which relates 

the location and effect of the source to any point on the boundary. 

The use of Green’s function effectively eliminates the need for a finite element mesh or a finite 

difference grid. 

 

Once the source is determined, potential and field are computed by integrating the source without 

interpolation. This provides inherent stability. Capacitance, inductance, and other parameters can be 

calculated by integrating the free charge, which is derived from the equivalent source [5]. Provided 



 

 

2 

 

the problem is piecewise homogeneous, the equivalent source is located only on the boundaries and 

interfaces of different media.  

 

In noon-linear problems, the BEM sill solves for the source of the field and not for its potential. All 

advantages of calculating the source applies. Only regions with non-linearities contain volume 

unknowns [6]. 

 

PHYSICAL BASIS 

 

In the electrostatic field,  

 

∆XE=0,                                                                     (1) 

 

so that E is irrotational and hence conservative which is a necessary and sufficient condition for the 

existence of a potential Φ in the form  

 

E= -∆Φ                                                                     (2) 

  

According to maxwell’s equation, in a source free region  

 

∆.D=0.                                                                     (3) 

 

The constitutive relation for a linear, isotropic region of dielectric constant ε is  

 

D=εE                                                                        (4) 

 

If the region is homogeneous, combining (2), (3) and (4) 

 

∆2Φ=0                                                                     (5) 

 

INTEGRAL EQUATION FORMULATION 

 

In a bounded region B with a piecewise smooth boundary ∂B, application of Green’s theorem [12] 

 

∬ (𝛷 ∆2𝐺 − 𝐺∆2𝛷)𝜕𝐵 = ∫ (𝛷
𝜕𝐺

𝜕𝑛𝜕𝐵𝐵
− 𝐺

𝜕𝛷

𝜕𝑛
)𝑑𝑟′             (6) 

 

to the unknown potential Φ and the free space Green’s function [13] 

 

G (r, r’)= ln 
𝑘

│𝑟−𝑟′│
                                (7) 

 

satisfying  

 

-∆2G=2∏δ                            (8) 
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Where δ is the Dirac Delta function, yields 

∫ (𝛷
𝜕𝐺

𝜕𝑛𝜕𝐵
− 𝐺

𝜕𝛷

𝜕𝑛
) 𝑑𝑟′ = −2𝜋𝛷 when 𝑟εB        (9a) 

∫ (𝛷
𝜕𝐺

𝜕𝑛𝜕𝐵
− 𝐺

𝜕𝛷

𝜕𝑛
) 𝑑𝑟′ = 0 when rεB0                                      (9b) 

 

k is a constant chosen such that k> max│r-r’│ which ensures that Green’s function is strictly 

positive throughout B.  

 

B0 is the region exterior to B. The validity of (9 a and b ) can be extended to an infinite region 

provided that Φ and G are regular at infinity [7]. Thus for exterior region  

 

− ∫ (𝛷0
𝜕𝐺

𝜕𝑛𝜕𝐵
− 𝐺

𝜕𝛷0

𝜕𝑛
) 𝑑𝑟′ =  0                 when 𝑟εB   and   (10a) 

− ∫ (𝛷0
𝜕𝐺

𝜕𝑛𝜕𝐵
− 𝐺

𝜕𝛷0

𝜕𝑛
) 𝑑𝑟′ =  −2𝜋𝛷              when rεB0                (10b) 

    

 From equations (9) and (10) 

 

− ∫ (𝛷 − 𝛷0  )
𝜕𝐺

𝜕𝑛𝜕𝐵
− 𝐺(

𝜕𝛷

𝜕𝑛
−

𝜕𝛷0

𝜕𝑛
) 𝑑𝑟′ =  𝛷(𝑟)                                                                    (11) 

 

The choice of Φ=Φ0 and  

σ (r’)= (
𝜕𝛷

𝜕𝑛
 - 

𝜕𝛷0

𝜕𝑛
 )                                         (12) 

gives ∫ 𝐺 (𝑟, 𝑟′) 𝜎 (𝑟′)𝑑𝑟′ =  𝛷 (𝑟)              (13) 

 

which is a single layer integral equation formulation for the Laplace’s equation [1] and [4] 

 

The integrand contains the distributed source and the free space Green’s function. From (13), given 

the source configuration, the potential can be found everywhere in the region. Usually, however, the 

source is not known but the potential or its normal derivative are specified on the boundary, and we 

seek an equivalent source that will sustain these conditions. Once, the equivalent source is known, 

any field value or parameter can be calculated. 

 

For Dirichlet boundaries the equation to be enforced is (13). For exterior Dirichlet problems to 

construct an acceptable solution the boundary decomposition (1) 

 

Φ(r)= ∫ 𝐺 (𝑟, 𝑟′) 𝜎 (𝑟′)𝑑𝑟′ + 𝑐  r ε ∂B                                          (14) 

 

is introduced where c is a constant to be determined under the side condition, 

 

∫ 𝜎 (𝑟′) 𝑑𝑟′ =  0                                                            (15) 

 

(15) is necessary for the logarithmic potential to be regular at infinity. 

 

For Neumann boundaries a Fredholm equation of the second kind results 

 

Φ’(r)= ∫ 𝐺 ′(𝑟, 𝑟′) 𝜎 (𝑟′)𝑑𝑟′ + 𝜋𝜎(𝑟)               rε∂B                                  (16) 
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Where Φ’(r) and G’ (r,r’) are the normal derivative of the potential and Green function with respect 

to the unprimed variable. 

 

Along any interface the continuity of flux density is enforced yielding 

 

(ε1-ε2)∫ 𝐺′(𝑟,𝑟′)𝑑𝑟′𝜎(𝑟′)𝑑𝑟′ + (𝜀1 + 𝜀2)𝜎(𝑟) = 0 

 

Where 𝜀1and 𝜀2 are the permittivity values of the materials forming the interface. To solve above 

integral equations for the equivalent source the Galerkin method is used. 

 

 

PROJECTION METHODS 

 

Projection methods are also called method of weighted residuals or moment methods (3), (4), (9). 

Consider the operator equation 

 

Lσ=g                                             (18) 

 

Where L is assumed to be a linear operator which maps XX to g uniquely. Normally L and g are 

known and we have the deterministic problem of finding σ. That is, we are required to solve 

 

σ=L-1g                  (19) 

 

 

Where L-1 is assumed to exist and that the solution for σ is unique. 

 

Let the solution be expanded by the series of functions in the domain of the operator and let a1, a2 

and a3 ……. be coefficient such that 

 

σ(x)= ∑ 𝑎𝑛𝑏𝑛
𝑚
𝑛=1 (x)                            (20) 

 

For an exact solution the expansion functions must form a complete set which is usually infinite in 

number. Rewriting (18) as  

 

Lσ(x)-g(x)=0                  (21) 
 

And substituting the expansion functions to approximate the potential, the residual is  

 

R= ∑ 𝑎𝑛𝑏𝑛
𝑚
𝑛=1 (y)-g(x)                           (22) 

 

 

which is equal to zero only if the coefficients and expansion functions can be found such that they 

are the exact solution. In the projection method the coefficients are found in such a way that the 

residual is forced to be zero – giving the best approximation. 
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A suitable inner product is taken with the residual and some prescribed functions over the range of 

the operator. These functions are called weighting functions, or more descriptively, testing functions. 

The inner product is defined by  

<wm,R>=∫ 𝑅 𝑤𝑛  ds                          m=1,2,3……..              (23) 
 

where w1,w2,w3….are are the testing functions. The inner product is set to zero forcing the residual to 

be orthogonal to the testing functions 

<wm,R>=0         (24) 
 

 

Substituting (22) into (24) and rearranging yields 

∑ 𝑎𝑛
𝑚
𝑛=1 < 𝑤𝑚 , 𝐿𝑏𝑛(𝑥) > = < 𝑤𝑚,g(x)>     (25) 

 

For a solution of (25) we approximate (20) by a finite sum. Eq. (25) is then a finite set of linear 

equations which can be put in matrix form as  

 

Sa=b                 (26) 
 

where  
Smn=<wm,Lbn> 

bm=<wm,g)                             (27) 

 
Assuming the matrix is not singular it may be inverted yielding the coefficients. These coefficients 

may then be substituted into (20) giving an approximate (on rare occasion on exact) solution for the 

charge. 

 

The accuracy of the approximation will obviously depend upon the choice of the expansion and testing 

functions, and the number of them used. These coordinate functions must be linearly independent as 

linear dependence will result in a singular S matrix. 

The particular choice of the expansion functions being the same as the testing functions is called 

Galerkin’s method. 

 

Boundaries are discretized into individual sections which are referred to as boundary elements. The 

expansion and testing functions, as well as the geometry, are specified on an element-by-element basis. 

Coefficients of the expansion functions are normally defined at nodes on the element. Each node is 

associated with a particular expansion function. Using linear shape functions, 

ɑ1=1-ξ 
                              ɑ2=ξ                    (28) 

 

The charge over each element is expressed as  

σ=∑ 𝜎1ɑ1𝑖=1 (ξ) 
 

where m=2 as linear elements are used. 

 

 

Using Lagrange quadratic shape functions 
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ɑ1=2ξ2-3ξ+1 

                                                    ɑ2=4(ξ-ξ2)                                               (30) 

ɑ3=2ξ2-ξ 
over the domain (0, 1), global positions in cartesian coordinates are specified parametrically over 

each element as  

 

x=∑ ɑ1
𝑚
𝑖=1 (𝜉)𝑥1 

y=∑ ɑ1
𝑚
𝑖=1 (𝜉)𝑦1 

 
we wish to determine 

<wm,Lσn>=<wm,b> 

 
Which can be put in vector notation as 

<ɑ,LɑT>σ=<ɑ,g> 

 
The operator L is dependent upon the boundary conditions where the inner product is being calculated. 

 

MICROCOMPUTER IMPLEMENTATION 

 

With the advent of powerful microcomputers, computations that were once only possible on mini 

and mainframe computers, are now possible on microcomputers. In addition, microcomputers offer 

highly interactive graphics capabilities which can be an invaluable aid in the design of a system. 

 

The boundary element method presented above has been implemented, on a microcomputer, in the 

program ELECTRO. The geometry of the problem that can be solved is arbitrary. The conductors 

may be of finite area or infinitesimally thin. 

 

The solver steps over each element and applies the appropriate inner product. All the integrals are 

calculated over the simplex (0, 1). 

 

One difficulty is the integration of the Green’s function singularity which occurs when the 

observation and source points coincide. This problem is easily catered to by dividing out the 

singularity and using a quadrature scheme containing the form of the singularity. This technique 

enables very accurate integrations of the singular integrand. 

 

Representing the potential at each point by a phasor, steady state sinusoidal fields can be calculated 

with ease. For example, multiphase transmission line fields can be calculated by solving a set of real 

and imaginary equivalent sources for given complex boundary conditions. 

 

The special features of the microcomputer environment, e.g., fast color graphics, color printer, 

mouse or keyboard entry, math coprocessor, hard disk, RAM disk, are fully utilized to create an 

integrated package which includes problem definition, analysis, data storage and transfer, drafting 

and presentation capabilities.  
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The user interface has been designed to require minimal keyboard entry and hand motion. Menus are 

structured to follow the natural pattern of defining and solving a problem and to incorporate the 

same sets of commands that operate on different objects. On-line help is provided in every menu. 

The use of the boundary element method also benefits the user interface. Geometry definition is not 

built around a mesh and the accuracy of results is easily checked by sound means. 

 

One has very powerful options to test the accuracy of a solution. On boundaries, the calculated and 

assigned conditions can be compared. Along interfaces, the calculated and actual field 

discontinuities can be checked. One could test the field values inside conductors. According to 

maximum principle of harmonic functions, the largest errors occur on boundaries. Hence these 

checks indicate the largest error in a solution. 

 

In the FEM, since the results are provided by interpolation no such simple and quick ways of 

checking the accuracy of a solution exits – on boundaries one would obtain exactly what was 

assigned. 

 

APPLICATION 

 

A Bus Bar Problem 

 

Maximum value of electric field magnitude (kV/mm) is calculated for a pair of rectangular bus bars 

shown in Fig. 1. 

 
Fig. 1: Rectangular Bus bar configuration. 

 

Table 1 presents the results for varying distance d and corner radius r. Dimensions are in inches. 

 

Table 1 

 

Bus bar problem results. 

 

d r ELECTRO FEM
2.0 0.125 2.6 2.7
2.0 0.0625 2.9 3.3
2.0 0.0 9.6 5.9
2.5 0.0 8.6 5.0
2.8 0.0 8.2 4.5
3.0 0.0 7.9 4.3
3.5 0.0 7.3 3.8
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When r = 0, BEM consistently gives higher values as the number of elements is increased. This is 

expected as the number of elements is increased. This is expected as the field is infinite at the corner. 

When corners are rounded, FEM gives values higher than BEM, possibly due to the artificial 

truncation of the open region. 

CONCLUSIONS 

 

The boundary element has been shown to be an efficient technique for the solution of Laplace’s 

equation for piecewise homogeneous media. This is mainly due to the reduction of one in 

dimensionality as all the unknowns are located only on the boundaries and interfaces. This differs 

from the finite difference and finite element methods in which the whole must be discretized. The 

unknown, computed using the boundary element method, is the equivalent charge that sustains the 

field. Once the equivalent charge is known any parameter can be derived. 
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