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Executive Summary 
 
Though sensors based on electromagnetic principles often appear to be simple devices, they can pose 

challenging analysis problems. This paper will provide guidelines to aid in the proper selection and application of 

electromagnetic CAE software for simulating and optimizing sensor systems. Example electric, magnetic and 

eddy current simulations will be used for illustration. In particular, this paper will discuss the approximations 

and simplifications that are often required to produce practical engineering models. 

 

Characteristics of Electromagnetic 

Sensor Systems 
 

Electric and magnetic fields can not only propagate through empty space, they can also penetrate various 

materials. Because of this, electromagnetic sensors are often the ideal choice for situations where direct contact 

is not possible or not desirable.     

However, this “action at a distance” property can also result in a more difficult simulation model than is 

encountered in more common types of analysis (such as mechanical stress analysis). Problems occur because 

the model space must be large enough to include all objects which would have a measurable effect on the 

sensor system. 

The designer must therefore have insight into all factors that affect the measurement, and their relative 

importance. In many cases secondary features must be omitted in order to produce a model which is feasible 

for solution in a reasonable amount of time. 

The remainder of this paper will discuss the factors that influence the choice of appropriate software, and the 

techniques for generating CAE models. 
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Basic Selection Criteria 
 

The analysis strategy and resulting choice of software are most heavily influenced by the following factors: 

 The type of physical interaction employed in the sensor system. This needs to be determined at the earliest 

stages of the design. 

 

 The nature of model geometry. Many sensor applications require a full 3D analysis, but in some cases 2D or 

Rotational Symmetric (also called Axisymmetric) software can be used. In addition, the aspect ratio of 

objects to be modeled and/or the size of the model space required may be a factor when deciding on the 

choice of solver method. 

 

 The choice of solver method. Most commonly used for sensor applications are Finite Element Method 

(FEM) and Boundary Element Method (BEM) field solvers. (Finite Difference Time Domain and Method of 

Moments solvers may be needed in High Frequency applications, but these will not be discussed in this 

paper.) 

 

We will discuss each of the above points in the following sections.  

 

Physics Considerations 
 

Sensor designers can choose a variety of methods depending on the quantity to be measured. For example, 

position can be measured using variation in capacitance, variation in flux produced by proximity to a permanent 

magnet, impedance variation of a coil inducing eddy currents, or inductive coupling of coils to list just four 

examples. 

Obviously simulating a capacitive sensor will require an electric field solver, and simulating flux produced by a 

permanent magnet will require a magnetic field solver, while the impedance sensor will require an eddy current 

solver. The inductive coupling sensor may require only a magnetic field solution, or it may require an eddy 

current solution depending on the physical construction and/or frequency of operation of the sensor. We can 

illustrate this using the example of a Linear Variable Differential Transformer (LVDT). 
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Occasionally, permanent magnet systems may involve linear or rotational motion which can in itself induce 

eddy currents in conductive bodies. Some eddy current software packages can approximate this by assigning 

constant velocities and performing a steady state solution. However, if time varying current sources are also 

present (including single frequency AC), a full transient simulation will usually be required. 

The picture at right shows a simplified model of an LVDT.  Here we 
have cut away the outer housing (colored green), coils (colored      
orange) and bobbin (colored yellow) to show the movable magnetic 
core (colored blue). 
  
The middle coil is the primary winding of the transformer which is 
driven by an AC source in order to create a field through the core and 
housing that couples with the two secondary coils. The two secondary 
coils are wound with opposite polarities and connected in series. As a 
result the induced voltages across the secondary coils will cancel 
when the core is centered. Displacing the core up or down from     
center will create a differential voltage proportional to the                
displacement and the direction of displacement will be indicated by 
the phase shift relative to the primary. 

 

 

If the core and housing have a low electrical conductivity      
and/or the operating frequency is low, eddy currents can be 
ignored and the LVDT can be simulated using a simple magnetic       
analysis. The field pattern at left shows this situation. 
  
However, for greater conductivities and/or higher frequencies, 
induced eddy currents will alter the field pattern and act as an 
additional load on the primary circuit. The field pattern shown 
at right includes the effects of induced eddy currents. Note 
how the field lines are now concentrated near the boundaries 
of the core and housing. 

 



INTEGRATED Engineering Software 

Page 6 

The key point from the above examples is that a thorough understanding of the physics to be modeled is the 

primary requirement that must be established at the start of the design project.  

 

Geometry Considerations 
 

Electromagnetic CAE software can be classified as either fully 3D or 2D.  Most 2D software can be set to solve 

field equations in their cylindrical coordinate formulations. This cylindrical coordinate mode is referred to as 

Rotational Symmetric (the term we will use in this paper) or Axisymmetric. We will use the abbreviation RS to 

indicate a Rotational Symmetric solution.  

 

 

When the RS formulation can be applied, it has three significant advantages: 

 It will produce exactly the same results as a full 3D simulation. 

 The RS models will be easier to build and modify since all the geometric objects are on a 2D plane. 

 RS models will solve significantly faster than full 3D models.  This is particularly important when trying to 

optimize models, and/or in transient simulations since both of these situations require multiple model    

solutions. 

 
Though 2D CAE analysis predominates in the areas of motor and         
generator design, RS analysis has more applications in the field of   
sensors. 
  
The LVDT model used in the previous section is a classic example of an 
RS problem. The picture at right shows that all the components of the 
LVDT are solids of revolution formed by extruding surfaces in a circular 
path around a common axis. 
  
Note that both conditions are required. If all components of a model  
possess cylindrical symmetry, but they do not share the same axis, 
then the RS formulation will not apply. 
  
In the LVDT example, even though the core moves during operation, 
the movement is constrained along the axis so the RS formulation will 
always be valid. 
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At right we show the resulting RS model of the  
capacitive sensor. 
  
Note that the RS formulation cannot account for the 
effects of tilting the disk so that it is no longer parallel 
with the sensor element.  (However in a later section 
we will show how planar symmetry conditions can be 
used for this situation.) 
  
As another example, the RS formulation would not 
strictly apply if the target were a cylinder with axis   
perpendicular to the sensor element. 

 

The RS formulation is also an excellent approximation 
in many cases where only the sensor itself has  
cylindrical symmetry. 
  
 At right we show a half section view of a capacitive 
sensor above a disk shaped target. In this case the 
target also possesses cylindrical symmetry, but this is 
not a strict   
requirement.  Note that only a small part of the target 
surface interacts with the sensor. Because of this, we 
can replace a non-symmetric target with one that has   
cylindrical symmetry provided the target is large 
enough, and the target surface is parallel to the  
sensor element. 
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It might seem that some approximate results could be    
obtained using a 2D (instead of RS) formulation as shown in 
the picture at right. There are two problems which limit the 
usefulness of this approach. 

First, the 2D field solution calculates results on a per unit 
length basis (usually per meter). These results can then be 
scaled by the length in the third dimension to predict the 
sensor performance. However, it is not clear what length 
should be used to scale the field   results. For a 2D           
formulation to be valid the magnet, pole piece and gear 
should ideally all be the same length which is clearly not the 
case. 

        

The key components of Magnetic and Eddy Current sensors 
are also often cylindrical and can be simulated using RS  
models depending on the characteristics of the target. 
  
The picture at right shows an example where the RS  
formulation will not be appropriate. Here a permanent  
magnet (colored green) is attached to a pole piece (colored 
magenta) and is positioned above a rotating gear (colored 
blue-grey). This is a common arrangement used in variable 
reluctance and Hall type sensor systems. Though the sensor 
element possesses cylindrical  symmetry, the gear target 
does not. 
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The examples shown in this section illustrate that the choice of analysis software is often more heavily 

influenced by the geometry and behavior of the target than the geometry of the sensor itself.   

In some cases it may be desirable to have both 2D/RS as well as full 3D software. Though in theory only 3D 

software is required, the speed and ease of use of 2D/RS software can expedite the initial design phase and may 

be well worth the additional cost. 

The second and perhaps more serious problem is that 
the 2D formulation imposes restrictions on the possible 
flux paths that are not realistic for the actual system. 
  
The picture at right shows a partial stream line plot 
that illustrates flux paths that are impossible to model 
using 2D software. 
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Solver Considerations 
 

Electromagnetic sensors function by transforming a quantity to be measured into outputs which are some form 

of signal (voltage or current), or some type of circuit parameter (which is usually measured by its impedance). 

Electromagnetic CAE software simulates the sensor outputs by computing the relevant field solution for the 

sensor system. The process of obtaining an accurate field solution is therefore the key step to accurately 

simulating a sensor system. 

The most common field solvers used for sensor applications are based on either the Finite Element Method 

(FEM) or the Boundary Element Method (BEM).  Both methods essentially convert the problem of solving the 

partial differential field equations into the numerical analysis problem of solving large systems of linear 

equations. Both methods discretize models of physical systems by creating meshes of geometric elements 

(typically 2D triangles and/or 3D tetrahedra). However, the two methods have fundamental differences in the 

types of unknowns that are solved for, and in the type of meshing required. 

FEM is the older of the two methods and was originally developed to solve structural analysis problems.  As 

applied to electromagnetics, FEM formulates a system of linear equations that solves for a potential function, 

and the field solution is then obtained through a process of numerical differentiation. 

BEM uses the approach of solving for equivalent sources (such as charges or currents) and obtains the field 

solution through a process of numerical integration. 

We can use the permanent magnet and pole piece from our previous gear sensor   
example to illustrate the differences in mesh requirements for the two methods. For 
simplicity we will omit the gear and model only the magnet and poled piece. 
  
The pictures at right shows a quarter section model of the permanent magnet and 
pole piece solved using FEM. The first consequence of using a FEM solver is that some 
sort of artificial boundary must be created to limit the solution space. Here a  
rectangular box has been created around the sensor, and the FEM formulation forces 
the field to be zero outside of the box. The size of the box can be specified by the user, 
and care must be taken that it is sufficiently large so as not to impose an unnatural 
limitation of the field solution. 
  
The second consequence is that a continuous mesh must be created throughout the 
box even in empty space regions. 
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Because of the large variety of sensor applications, it is usually not possible to determine in advance which 

method will be superior for a particular problem. It may even be desirable to use both types of solvers in order 

to provide confirmation of results using entirely different formulations. Fortunately, most vendors provide some 

sort of trial evaluation which is especially useful when actual test data from production models is available for 

comparison with simulation results. 

 

Some Brief Comments on Meshing 
 

In the previous section we mentioned that numerical field solvers must discretize the model space into meshes 

of elements and then use these elements to construct a system of linear equations. The construction of a 

proper element mesh is therefore vital to obtaining an accurate field solution.   

As a general rule the greater the number of elements the more accurate the solution, though usually fewer 

elements are required where the field gradient is small (a more or less constant field) and/or the field is weak. 

The naïve approach of creating a dense mesh everywhere in the model space is not only unnecessary, it is 

inefficient as it results in extremely long solution times. 

A further complication is that it is usually not possible to predict in advance exactly where the most elements 

are required, or how many will be required for an accurate solution. An experienced user can often make an 

excellent first guess, but usually a trial solution followed by refinement of the initial mesh is desirable to ensure 

accuracy requirements are met. If the solution with the refined mesh produces results that differ greatly from 

the initial mesh results, additional refinement steps may be needed. 

By way of contrast, the picture at right shows the magnet and pole piece solved using 
BEM. Note that BEM does not require the creation of a boundary box, or meshing of   
empty space regions. 
  
As a general rule, the more mesh elements required, the larger the resulting system of 
linear equations. This would appear to give BEM the clear advantage over FEM, and this 
is generally the case for models which have large regions of empty space.   
Counteracting this is that BEM tends to produce a “dense” matrix while FEM produces 
a “sparse” matrix which may lead to a faster numerical solution. 
  
Another factor to be considered is that the time to create and refine the element mesh 
may in itself constitute a significant portion of the total solution time. Here again BEM 
may have the advantage particularly if the model contains a number of objects that are   
separated by small gaps, since the FEM formulation requires continuous meshing  
throughout the model space. 
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We’ve also mentioned that sensor design projects typically involve a large number of trial solutions. This 

provides a further incentive to reduce solution times where possible, and it also suggests that some form of 

automatic meshing would be desirable for the CAE software selected. 

Some CAE software packages employ self-adaptive meshing algorithms. These algorithms automatically refine 

the mesh using results obtained from a series of trial field solutions. This is particularly desirable for sensor 

systems which contain moving components since different meshes will be required over the range of operating 

positions. 

 

 

 

 

The meshing capabilities of a CAE field solver program can be a key factor in determining its suitability for a 

particular sensor application. Here again, a trial evaluation may be the best way to decide among competing 

alternatives.  

We can illustrate how this approach works in practice using our gear sensor 
example. We will use models solved using BEM. 
  
At right we show the magnet, pole piece and gear teeth with a coarse initial 
mesh. 
  
In this case all of the gear teeth have the same type of mesh even though it is 
obvious that the gear tooth directly aligned with the pole piece will   
experience the highest field strength. 

 

 
 
Next we show the system after several refinement steps. 
  
The magnet and pole piece are now densely meshed which is appropriate 
since the magnetic flux density will be greatest in these components. 
  
But in particular, note that the gear tooth in alignment with the pole piece is 
now more densely meshed than the other teeth. Also the mesh is not   
uniform over the surface of the tooth, but instead is concentrated in the  
region near the tip of the pole piece. 
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Reducing, Simplifying and 

Approximating Models for Faster 

Solutions 
 

The advent of parallel processing to utilize multi-core processors, combined with 64-bit operating systems and 

ever more affordable RAM has dramatically increased the speed of PC based CAE simulation software. Even so, 

most design projects typically entail the solution of a large number of models – often 3D models – which 

provides incentive to reduce solution times where possible. 

The three most common methods to reduce solution times are: 

 Exploiting patterns that naturally occur in the physical system to reduce the model size using symmetry 

and/or periodicity conditions. When these apply, the reduced model solution will still provide all the 

information of a full model. 

 

 Simplifying the model by eliminating features of secondary importance and/or truncating the model space. 

This involves a tradeoff between speed and accuracy, since the simplified model cannot provide an exact 

solution. 

 

 Approximating 3D features as being 2D or RS. Again, there will be a tradeoff between speed and accuracy, 

but in some cases the full 3D model may be so complex that it exceeds the capacity of available computer 

resources. 

 

We will illustrate each of these approaches in the following sections. 

 



INTEGRATED Engineering Software 

Page 14 

Reducing Model Size using Symmetry 

and Periodicity 
 

At right we show a full model view of the capacitive sensor we 
had previously used as one of our examples for RS simulations. In 
this case the disk has been tilted so that the RS formulation 
would no longer apply 
  
Though this situation can no longer be solved as RS, it is possible 
to reduce the size of the model (and reduce solution time) by 
noting that there is still symmetry across a plane. 

 
 

At right we show the resulting model that has been reduced by 
half using the symmetry condition. Note that we have not     
sacrificed any accuracy by this method, but the solution time 
will be greatly reduced. 
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Simplifying Models by Eliminating  
Secondary Features 
 

 
 

If the disk and sensor are maintained parallel and centered, even 
further reductions are possible. The picture at right shows a one 
quarter model. Here we can use either two symmetry planes, or 
we can set the model as angular periodic with four sections in the 
full model. 
  
Because of the uniformity of the sensor and disk, we could use 
the angular periodic method to reduce the model even further, 
but at some point we could begin to lose accuracy due to badly 
shaped elements. 

 

The picture at right shows a permanent magnet sensor 
aligned with the tooth of a gear. Note that a symmetry plane 
condition has been used so only half of the gear and sensor 
have been modeled. 
  
Because the flux density is greater for the parts of the gear 
close to the sensor we can reduce the model by omitting  
sections of the gear that are far from the sensor. 
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Approximating 3D feature as RS or 2D 

The next picture shows a reduced model where only one sixth of 
the gear is simulated. This model solves considerably faster, but still   
produces results which are within 5% of the full gear model. 
  
Typically this type of sensor requires solutions at a number of angu-
lar positions to model the full variation of flux as the gear rotates. 
This is compounded when several sensor variations are simulated in 
order to optimize performance. 

 

The eddy current sensor shown at right consists of an AC coil 
wound around a cylindrical ferrite pole piece (here we show a 
quarter model). The coil current induces eddy currents in the  
conductive target (shown by the current density contour plot). 
The coil impedance will change depending on the gap between 
the sensor and target, or the presence of flaws in the target. 
  
Depending on the operating frequency, the impedance of the coil 
may be greatly affected by skin effects and proximity effects.  
Simulating these factors requires modeling all of the individual coil 
turns, and this may not be feasible in 3D if there are a large  
number of turns. Fortunately it is often  possible to use 2D and RS 
approximations. We will illustrate this first with an RS example. 
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 Below left we show a single turn of a helical coil which has a rectangular cross section. At right we show the single turn 
approximated as a toroid. While a helix requires a full 3D model, a toroid is a solid of revolution and can be modeled   ex-
actly using an RS formulation. 
 
  

        

This is in fact a very good approximation in practice. Below left we show the current flow and current density in the 3D 
helical turn compared to the RS toroid approximation shown at right. In the RS model we show the start and end surfaces 
of the helix solely for visualization purposes; they are not part of the RS model. 
 
 
  

     

Similarly, a multi-turn helical coil would be approximated as a stack of concentric toroids. In the pictures below we show 
the 3D model of a 4-turn coil and its equivalent RS representation. 
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The coil examples we have shown have relatively few turns, and could be modeled directly in 3D software, 

though simulation times would become significant if multiple solutions for different gaps were required (as 

would usually be the case). Typical sensors may have windings consisting of hundreds of turns, which would at 

best lead to extremely long solution times, or at worst might even exceed available computer capacity. 

For models which are long in one dimension a 2D approximation would be more appropriate. The 3D and 2D equivalent 
models for this situation are shown below. 
 
 
  

          

Below left we again show the original 3D sensor, and at right the equivalent RS model. 
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Model Performance Testing and Design 

Optimization 
  

Having selected the appropriate software based on physical considerations, and simplified the model where 

possible, the sensor designer can proceed to the actual design and optimization phases. 

Since sensors are often specified by their maximum and minimum operating ranges, the testing of trial designs 

will involve at least two model simulations. In practice the variation of the sensor output over its range of 

operation is usually of interest and this will require multiple solutions for every trial design. 

Most software packages provide some type of utility to automatically generate multiple solutions. Depending 

on the vendor, this functionality may be referred to as batch, parametrics or scripting (or in some cases more 

than one utility may be provided). For this paper we will use the following terminology: 

 Batch will refer to the simple solution of a series of models.  The models may in fact be completely 

unrelated. 

 Parametrics will refer to the solution of a series of models which are variations of a single basic design. 

 Scripting will refer to the use of an external program to control the operation of the CAE simulation 

software. 

These concepts are somewhat related, and may occur in combinations of each other (for example, a batch file 

may be set to run a series of parametrics). 

Batch runs on their own are of limited usefulness since they can only solve pre-existing models. For example, 

studying the variation of a sensor performance over its operating range would require manually creating each of 

the individual models for the batch solution. 

Parametrics are often the most useful feature for sensor design problems. If the parametrics can be 

programmed using a graphical interface they are particularly easy to set up. Depending on the ingenuity of the 

designer, parametric runs can be programmed to produce multiple design variations, and then run each 

variation through its range of operation.   

Scripting can provide even greater latitude in design variations, however this comes at a cost of greater 

investment in time involved in creating the initial script. Scripting can provide an automatic method for 

producing multiple custom designs based on end user requirements. Using our previous gear sensor example, a 

script could be written to create gears of various sizes and with various numbers of teeth; something which  
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could not be done in parametrics. Scripting can also allow external optimization routines to control the CAE 

analysis software. 

Using these tools, optimum designs can be achieved much faster than would be possible by building and testing 

actual physical prototypes. However, here again the designer must have a complete grasp on the factors 

affecting the performance of the sensor system. Without this understanding, the optimization process will 

deteriorate into a brute force random search where all possible parameters are varied in hope of eventually 

finding the best design. 

 

Summary 
 

The selection and application of CAE software for sensor design projects depends on a thorough understanding 

of the physics and expected operating conditions of the sensor system.   

When evaluating software alternatives, the following points should be considered: 

 A sensor design project will almost always involve a large number of simulations. This is a key factor to keep 

in mind when selecting software. 

 Consider whether a 2D/RS field solver would be appropriate. 

 Look for CAE software that automates the construction and solution of models.   

 Remember that proper meshing is a crucial requirement in obtaining accurate solutions. 

 Whenever possible, have design engineers test the software against current production models to confirm 

that they will be able to produce the required results for any new projects. 

 

The last point is often neglected, though ultimately it may be crucial in determining whether or not the selected 

software will be suitable for its intended use. Basing the final purchase decision on vendor demonstrations 

alone may lead to unpleasant surprises when the software is turned over to the end users. Ideally, the designers 

themselves should be able to demonstrate that they are able to use the software to produce accurate 

simulations. 
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About INTEGRATED Engineering 

Software 
 

Since its inception in 1984, INTEGRATED Engineering Software has created simulation tools that reflect the 

inspiration of our customers: thousands of engineers and scientists who, everyday, push the boundaries to 

envision what is possible. They take their ideas from a realm that is almost science fiction and bring them to 

reality. 

 

As the name of our company suggests, all our programs are seamlessly integrated, starting from a concept, 

through entry of the geometry and physics of the problem, to the selection of type of solver and the problem's 

solution. Once the problem has been solved, a vast number of parameters can be calculated or the field 

quantities displayed. 

 

INTEGRATED Engineering Software is a leading developer of hybrid simulation tools for electromagnetic and 

particle trajectory analysis. We provide a complete line of fully integrated 2 and 3 dimensional simulation 

software. 

 

Since the creation of our company, our focus has always been here and our experience has grown hand-by-hand 

with a great recognition in our market. 

 

INTEGRATED is staffed with leading R&D engineers in areas such as electrical engineering, magnetics, and high 

frequency applications. Our tools are used in a wide variety of industries, including manufacturing, automotive, 

medical, telecommunications, power, health care and aerospace markets, as well as universities and research 

laboratories. 

 

INTEGRATED products allow engineers and scientists to reduce design cycles, save time and money and deliver 

more efficient products to the market faster than ever before. 

 

INTEGRATED empowers engineers and scientists with many options to choose from: 
The best solvers for each specific application: Boundary Element Method (BEM), Finite Element Method (FEM) 
or Finite Difference Time Domain (FDTD) solvers. The best optimization tool for each particular 
design: parametric analysis, scripting or application programming interface (API) 

INTEGRATED’s commitment is to provide designers with the most sophisticated analysis tools to assist them in 

the creation of the future. 

 

http://www.integratedsoft.com/Technology/BEM
http://www.integratedsoft.com/Technology/FEM
http://www.integratedsoft.com/Technology/FDTD
http://www.integratedsoft.com/Technology/Optimization-Parametrics
http://www.integratedsoft.com/Technology/Optimization-Parametrics/Scripting
http://www.integratedsoft.com/Technology/API
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Contact us for an evaluation 

Send us your model, whatever the level of complexity. We will show you how to get results from your exact 

design – no canned demos. 

 

Contact us for an evaluation and start improving productivity today. A live demo is also available. 

 

Phone:  +1 204 632 5636 

Fax: +1 204 633 7780 

Email:  info@integratedsoft.com 

Website: www.integratedsoft.com 

 

 


