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ABSTRACT

A boundary element method has been developed for the analysis of 3D eddy current problems. This
method is based on the boundary integral equation formulation with equivalent electric and magnetic
currents and electric charge as unknowns. Linear shape functions, defined parametrically over a
quadrilateral element, have been selected for the Galerkin’s method.
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Abstract – A boundary element method has been 
developed for the analysis of 3D eddy current problems. 
This method is based on the boundary integral equation 
formulation with equivalent electric and magnetic currents 
and electric charge as unknowns. Linear shape functions, 
defined parametrically over a quadrilateral element, have 
been selected for the Galerkin’s method. 

I. INTRODUCTION 
 
The numerical treatment of most linear or nonlinear EM 
field problems can be effectively achieved through a 
boundary element method (BEM) [1]. The boundary 
element method, as compared with domain-type methods, 
such as finite element method (FEM) and finite difference 
method (FDM), has two salient advantages: 1) dimensions 
of the problem are effectively reduced by one; 2) the 
analysis is equally applicable to bounded and unbounded 
regions. In the case of analysis of eddy current problems 
with high conductivity or at high frequency, domain type 
methods are very difficult and expensive to use in handling 
strong skin effect and open boundary problems. 
 
There are three major difficulties involved in the analysis 
of 3D eddy current problems using BEM: 1) the vector 
nature of problems results in a very large number of 
unknowns; 2) the loose coupling between electric and 
magnetic fields in the air at low frequency makes it difficult 
to satisfy the interface conditions and to obtain a unique 
solution in conjunction with an appropriate choice of gauge 
condition; 3) highly singular kernels in boundary integral 
equations require expensive numerical integration to 
obtain accurate solutions. 
 
In recent years, different formulations for 3D eddy current 
problems have been developed. Mayergoyz [2] has 
formulated an integral equation in terms of the equivalent 
electric current and magnetic charge. The greatest 
advantage of this formulation is that only three unknowns 
are required on the node on an interface between a 
nonconducting region and a conducting region. However, 
in general this formulation can only handle problems with 
simply connected regions. Moreover, the equations 
involve highly singular terms that must be integrated in the 
Cauchy’s principal sense. This makes if very difficult to 
use the Galerkin’s method to solve the equations. Another 
minimum order formulation has been developed by Shao, 
Zhou and Lavers [3], using the second order vector 
potential in the conductor region and a magnetic scalar 
potential in the air. This formulation also contains highly 

singular integrals. Morisue [4] has presented a formulation 
using the magnetic vector potential and the electric scalar 
potential. A set of boundary conditions are used to satisfy 
the Coulomb gauge in order to give a unique solution for 
the problem with multiply connected regions. A total of 12 
unknowns are required on each node and highly singular 
integrals are involved in the formulation. Rucker and 
Richter [5] have developed a formulation using the 
magnetic flux, magnetic vector potential and electric scalar 
potential as unknowns. This method requires 7 unknowns 
on each node and also involves highly singular integrands. 
Ishibashi has used a least residual approach in 
conjunction with BEM to analyze 3D eddy current 
problems [6]. However, this formulation is quite expensive 
because of the involvement of the least squares solutions. 
 
In this paper, a boundary element method is presented for 
the analysis of time harmonic 3D eddy current problems. 
The method is based on the boundary integral equation 
formulation with the equivalent electric and magnetic 
currents, and electric charge as unknowns. This integral 
equation formulation is preferable to the several other 
possible variants because it can handle multiply 
connected regions and has only R-1 singular kernels in the 
integrals. In the BEM technique, the surface of a 
conducting object is modeled in terms of curvilinear 
quadrilateral elements. The Lagrange linear shape 
functions, defined parametrically over each element, have 
been selected for the Galerkin’s method. A numerical 
example is given to show the accuracy and reliability of 
this method. 
 

II. INTEGRAL EQUATION FORMULATION 
 
Consider a linear, isotropic and homogeneous conducting 
material region Vc embedded in free space Vo. The region 
Vc is bounded by the surface S with the outward unit 
normal n  , and is characterized by permeability µ   and  
σ conductivity  . Assume there exists an external 

excitation (B1, E1) with tje ω variation. The displacement 
current is neglected since we are only interested in eddy 
current problems at low frequency in this paper. 
 
Using the vector Green’s theorem, the B and E fields at an 
arbitrary observation point r in Vo  can be expressed as [6] 
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where c=1 for r in V0 and c=0.5 for r on the surface S. 
Note that when r is on the surface S, the surface ingegrals 
in (1) and (2) are the principal value integrals which 
exclude the contribution from the singularity point. 
 
Similarly, the fields inside the conductor Vc can be written 
as 
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In the above equations G1 and G2 are the Green’s 
functions in region V0 and Vc, respectively, and are given 
as 
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where R is the distance between the observation point r 
and source (integrating) point r', and ωµσκ j−=2 . It is 
important to notice that using (1)-(4), we have [6] 
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Now we can define the equivalent electric and magnetic 
surface currents as 

)(ˆ)( 1 rxHnrJs =  
(8) 

).(ˆ)( 1 rxEnrMs −=  
(9) 

 
Since the tangential components of E and H are 
continuous across S, Js and Ms can also be expressed as 

)(ˆ)( 2 rxHnrJs =  
(10) 

).(ˆ)( 2 rxEnrMs −=  
(11) 

 
The normal component of the B field can be expressed as 
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(12) 
 
Generally speaking, one can obtain the normal component 
of E from the tangential components of H using 
 

.)ˆ(ˆ 110 sJxHnEnj ⋅−∇=⋅−∇=⋅ωε  
(13) 

 
However, for low frequency eddy current problems, eq. 
(13) is not adequate to obtain the E normal due to the 
nature of .00 ≈ωε  Therefore, we need to define the 
equivalent electric charge as 
 

.)(ˆ 01 εrEnqe ⋅=  
(14) 

Also, 0ˆ 2 =⋅ En  should be used in (4). 
 
At this point, one may want to use two of the equations in 
(1)-(4) to solve the equivalent sources. However, as 
discussed in [6], in order to obtain an accurate solution, an 
over determined system has to be solved in the least 
squares sense since there are more equations that have 
to be satisfied than unknowns. Furthermore, since this 
approach involves highly singular kernels in the integral 
equations, it becomes difficult to implement using the 
Galerkin’s method. In this paper, we use a different 
approach to obtain the boundary integral equations. 
 
Substituting the equivalent sources in (1)-(4), and letting 
the r approach the surface from the positive side of S in 
(1) and (2), and from the negative side in (3) and (4), and 
adding (1) to (3) and (2) to (4), with some manipulations 
we obtain a set of boundary integral equations as 
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(17) 
 
To use (15)-(17) in a boundary element method, one has 
to use the shape function so that ss M⋅∇  exists and is 

continuous on the surface S. If ss M⋅∇  is discontinuous 
along some lines, additional line integrals are required in 
(15). Instead of using (15), one can transfer the operator 
nabla on the magnetic current to act on the Green’s 
functions. Thus, eq. (15) can be expressed as 
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A similar approach has been used by Muller [8] for the 
analysis of high frequency scattering problems where (17) 
is not required since one can obtain the E normal from the 
tangential components of the H field using (13). 
 
One can prove that, except for the third term on the left 
hand side of (16), the highest singularity in all of the 
kernels in (15)-(18) is R-1, which can easily be handled 
using standard numerical integration techniques. Since the 
Galerkin’s method has been used in our boundary element 
method, double surface integrations are involved in the 
matrix accumulation. Applying Stokes theorems to the 
third term of (16), one can transform one of the surface 
integrals into a line integral, which effectively reduces the 
singularity to R-1. 
 
The above formulation can be applied to general cases. 
For example, we can use (15) or (18) to the surface of a 
non-conducting magnetic material region where only Js 
exists. One can easily prove that (15), in this case, can be 
written as 
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ss
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2
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(19) 
 
which is the same as the equation used in magneto static 
problems [1]. If there exists an interface between two 
conductors with different conductivities, one needs to 
apply (15) or (18) and (16) to the surface with a minor 
modification. In this case, the normal component of the E 
field can be obtained using 

1
1ˆ

σ
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III. IMPLEMENTATION AND RESULTS 
 
The boundary integral equations in (16)-(18) are solved 
using a boundary element method. The surface S is 
modeled using the isoparametric, quadrilateral elements 
[1]. Linear vector shape functions are used to represent 
the Js and Ms, and a linear scalar shape function is used to 
model the electric charge qe. Five unknowns are required 
on each node. If there are N nodes in a problem, a system 
of equations with 5Nx5N coefficients can be obtained 
using the Galerkin’s method. Then this system of 
equations can be effectively solved either directly or 
iteratively. The fields of interest at any point can be easily 
calculated using (1), (2), (3), or (4). 
 
As a numerical example, we use the present method to 
solve the TEAM problem 3 [9]. This problem consists of a 
conducting bath plate with 2 holes excited by a circular coil 
as show in Figs. 1 and 2. The conductivity of the plate is 

71027.3 x=σ  S/m and the coil carries a current of 
I=1260 A turns. The analysis has been done for two coil 
positions and at two frequencies. Making use of the 
symmetry of the problem for coil position 1, only a quarter 
of the late needs to be analyzed, and 152 elements are 
used. In the case of coil position 2, one half of the plate 
has been modeled, and 304 elements are used. 

 
Fig. 1  Conducting plate with two holes (1=mm). 

 
Fig. 2.  Conducting plate and the two excitation coil 
positions. 
 
We list the calculated and measured [10] induced voltages 
in 10-turn search coils in Table I. In Fig. 3, we show 



 

 

calculated and measured flux densities, Bz, along the line 
A-B (x=0, z=0.5 mm) for coil position 1 at f=50 Hz. 
 
Table I (a): Voltages in search coil C due to coil at position 1 

Frequency (Hz) Calculated (mV) Measured (mV) 
50 21.61 <-108.4> 22.10 <-109.1> 
200 54.24 <-141.7> 54.32 <-142.0> 

 
Table I (b): Voltages in search coil C due to coil at position 2 

Frequency (Hz) Calculated (mV) Measured (mV) 
50 30.13 <-107.5> 30.74 <-108.0> 
200 78.15 <-140.9> 78.43 <-142.2> 

 
Table I (c): Voltages in search coil D due to coil at position 2 

Frequency (Hz) Calculated (mV) Measured (mV) 
50 5.5 <-119.6> 6.3 <-118.4> 
200 10.3 <-173.7> 11.17 <-166> 

 

 
 
Fig 3. (a) Magnitude and (b) phase of Bz along line A-B for 

coil position 1 at f=50 Hz. 
 
Good comparison between calculated and measured 
results has been observed in general. 
 
 

IV. CONCLUSION 
 
A general and accurate boundary element method is 
presented for the analysis of 3D eddy current problems. 
The advantages of this newly developed method are as 
follows: 
 

(1) The correct fields E and B can easily be calculated at 
any point after the equivalent sources are obtained; 

(2) The method is general and can be used to solve 
problems with multiply connected regions and other 
complicated configurations; 

(3) Since R-1 singularity kernels are involved in the 
integral equations, efficient and simple numerical 
integration algorithms can be employed to obtain very 
accurate results; 

(4) Since this formulation uses the Fredholm integral 
equation of the second kind, the resulting matrix is 
diagonally strong and can be effectively solved 
iteratively in most cases; 

(5) The use of the Galerkin’s method leads to faster 
solution convergence and more reliable results. 
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