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ABSTRACT

The boundary element method (BEM) and its use in computer-aided field analysis is presented in
this paper. The BEM is compared against the finite difference method (FDM) and finite element
method (FEM) for two-dimensional and rotationally symmetric problems. The advantages of BEM
are stated for an application in high voltage power apparatus design. It is shown that BEM is
superior to FDM and FEM, both for linear and non-linear problems.

INTRODUCTION

The common concept in the numerical methods is the reduction of the governing field equation or an
equivalent integral formulation into a linear system of equations. These methods can be classified in
two categories: the methods where approximations are to be made throughout the region B, and the
methods where approximations are to be made only on the boundary ¢B. The finite difference and
finite element methods belong to the first category while the boundary element methods belong to
the second.

BOUNDARY ELEMENT METHOD

The methods of the second category solve a boundary integral equation formulation of the problem
for some unknowns on A ([1]. These methods not only produce precise results with far less data as
compared to the methods of finite differences and finite elements but also cater to open region
problems without any artificial truncation of the region and model problem geometries accurately.
Since the approximations are done only on the boundary, the dimensionality of the problem is
reduced by one. Furthermore, usually being bounded and often completely continuous, integral
operators as compared to differential operators admit a wider selection of trial functions [2].

Direct methods in this category solve an integral equation formulation for the unknowns directly [3],
while indirect methods solve for the source of the unknown [4]. The boundary element method
presented in this paper is an indirect method. An equivalent source, which would sustain the field, is
found by forcing it to satisfy prescribed conditions under a free space Green’s function which relates
the location and effect of the source to any point on the boundary.

The use of Green’s function effectively eliminates the need for a finite element mesh or a finite
difference grid.

Once the source is determined, potential and field are computed by integrating the source without
interpolation. This provides inherent stability. Capacitance, inductance, and other parameters can be
calculated by integrating the free charge, which is derived from the equivalent source [5]. Provided
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the problem is piecewise homogeneous, the equivalent source is located only on the boundaries and
interfaces of different media.

In noon-linear problems, the BEM sill solves for the source of the field and not for its potential. All
advantages of calculating the source applies. Only regions with non-linearities contain volume
unknowns [6].

PHYSICAL BASIS

In the electrostatic field,

AXE=0, 1)

so that E is irrotational and hence conservative which is a necessary and sufficient condition for the
existence of a potential @ in the form

E=-AD 2)
According to maxwell’s equation, in a source free region

A.D=0. (3)
The constitutive relation for a linear, isotropic region of dielectric constant ¢ is

D=¢E (4)
If the region is homogeneous, combining (2), (3) and (4)

A*D=0 (5)
INTEGRAL EQUATION FORMULATION

In a bounded region B with a piecewise smooth boundary 0B, application of Green’s theorem [12]
20 _ A2 — 96 _ 9% 4y
Iy (@ 8°G = GA*®)0B = [ (P ——G—)dr (6)
to the unknown potential @ and the free space Green’s function [13]
(7)

satisfying

-A’G=2115 (8)
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Where ¢ is the Dirac Delta function yields
faB(cb ——G —) dr' = —2m® when reB (9a)

J-aB((D% - %) dr' = 0 when reBo (9b)

k is a constant chosen such that k> max | r-r’ | which ensures that Green’s function is strictly
positive throughout B.

Bois the region exterior to B. The validity of (9 a and b ) can be extended to an infinite region
provided that @ and G are regular at infinity [7]. Thus for exterior region

— [,5(@o Z—G -G %) dr'= 0 whenreB and (10a)
- faB(cDO— G aqbo) dr' = —2n® when reBo (10b)

From equations (9) and (10)

~ (@ = )5 = G — ) dr' = @(r) (11)
The choice of ®=@; and
o ()= (- 22) (12)
gives [ G (r,r’) o(rdr' = @ (r) (13)

which is a single layer integral equation formulation for the Laplace’s equation [1] and [4]

The integrand contains the distributed source and the free space Green’s function. From (13), given
the source configuration, the potential can be found everywhere in the region. Usually, however, the
source is not known but the potential or its normal derivative are specified on the boundary, and we
seek an equivalent source that will sustain these conditions. Once, the equivalent source is known,
any field value or parameter can be calculated.

For Dirichlet boundaries the equation to be enforced is (13). For exterior Dirichlet problems to
construct an acceptable solution the boundary decomposition (1)

o()=[G (r,r')o (r')dr' +creoB (14)
is introduced where c is a constant to be determined under the side condition,
fo(@)dr'=0 (15)
(15) is necessary for the logarithmic potential to be regular at infinity.
For Neumann boundaries a Fredholm equation of the second kind results

0= [G6'(r,r") o (@)dr' + no(r) reoB (16)
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Where ®@’(r) and G’ (r,r") are the normal derivative of the potential and Green function with respect
to the unprimed variable.

Along any interface the continuity of flux density is enforced yielding
(e1-€2)[ G’ dr'a(r)dr' + (€1 + €2)a(r) = 0

Where e1and €2 are the permittivity values of the materials forming the interface. To solve above
integral equations for the equivalent source the Galerkin method is used.

PROJECTION METHODS

Projection methods are also called method of weighted residuals or moment methods (3), (4), (9).
Consider the operator equation

Lo=g (18)

Where L is assumed to be a linear operator which maps XX to g uniquely. Normally L and g are
known and we have the deterministic problem of finding o. That is, we are required to solve

o=L1g (19)

Where L is assumed to exist and that the solution for o is unique.

Let the solution be expanded by the series of functions in the domain of the operator and let as, az
andas....... be coefficient such that

0(x)= Xn=1 anbn(x) (20)

For an exact solution the expansion functions must form a complete set which is usually infinite in
number. Rewriting (18) as

Lo(x)-g(x)=0 (21)
And substituting the expansion functions to approximate the potential, the residual is

R=Yn=1 anbn(y)-g(x) (22)

which is equal to zero only if the coefficients and expansion functions can be found such that they
are the exact solution. In the projection method the coefficients are found in such a way that the
residual is forced to be zero — giving the best approximation.
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A suitable inner product is taken with the residual and some prescribed functions over the range of
the operator. These functions are called weighting functions, or more descriptively, testing functions.
The inner product is defined by

<Wm,R>=[ R w,, ds m=1,2,3........ (23)

where wi,W2,Ws....are are the testing functions. The inner product is set to zero forcing the residual to
be orthogonal to the testing functions
<Wm,R>=0 (24)

Substituting (22) into (24) and rearranging yields
10y < Wy, Lbn(x) > =< wy,g(x)> (25)

For a solution of (25) we approximate (20) by a finite sum. Eq. (25) is then a finite set of linear
equations which can be put in matrix form as

Sa=b (26)

where
Srn=<Wm,Lbn>
bm=<Wm,g) (27)

Assuming the matrix is not singular it may be inverted yielding the coefficients. These coefficients
may then be substituted into (20) giving an approximate (on rare occasion on exact) solution for the
charge.

The accuracy of the approximation will obviously depend upon the choice of the expansion and testing
functions, and the number of them used. These coordinate functions must be linearly independent as
linear dependence will result in a singular S matrix.

The particular choice of the expansion functions being the same as the testing functions is called
Galerkin’s method.

Boundaries are discretized into individual sections which are referred to as boundary elements. The
expansion and testing functions, as well as the geometry, are specified on an element-by-element basis.
Coefficients of the expansion functions are normally defined at nodes on the element. Each node is
associated with a particular expansion function. Using linear shape functions,
C|1=1-£
ax=§ (28)

The charge over each element is expressed as
0=X.i=1 0104(€)

where m=2 as linear elements are used.

Using Lagrange quadratic shape functions
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a1=2€2-3€+1
a;=4(§-§?) (30)
a3=28%-§
over the domain (0, 1), global positions in cartesian coordinates are specified parametrically over
each element as

x=2i21 a1 (§)xq
y=Xi21 a1 Oy

we wish to determine
<Wm,Lon>=<wn, b>

Which can be put in vector notation as
<a,La™o=<a,g>

The operator L is dependent upon the boundary conditions where the inner product is being calculated.
MICROCOMPUTER IMPLEMENTATION

With the advent of powerful microcomputers, computations that were once only possible on mini
and mainframe computers, are now possible on microcomputers. In addition, microcomputers offer
highly interactive graphics capabilities which can be an invaluable aid in the design of a system.

The boundary element method presented above has been implemented, on a microcomputer, in the
program ELECTRO. The geometry of the problem that can be solved is arbitrary. The conductors
may be of finite area or infinitesimally thin.

The solver steps over each element and applies the appropriate inner product. All the integrals are
calculated over the simplex (0, 1).

One difficulty is the integration of the Green’s function singularity which occurs when the
observation and source points coincide. This problem is easily catered to by dividing out the
singularity and using a quadrature scheme containing the form of the singularity. This technique
enables very accurate integrations of the singular integrand.

Representing the potential at each point by a phasor, steady state sinusoidal fields can be calculated
with ease. For example, multiphase transmission line fields can be calculated by solving a set of real
and imaginary equivalent sources for given complex boundary conditions.

The special features of the microcomputer environment, e.g., fast color graphics, color printer,
mouse or keyboard entry, math coprocessor, hard disk, RAM disk, are fully utilized to create an
integrated package which includes problem definition, analysis, data storage and transfer, drafting
and presentation capabilities.
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The user interface has been designed to require minimal keyboard entry and hand motion. Menus are
structured to follow the natural pattern of defining and solving a problem and to incorporate the
same sets of commands that operate on different objects. On-line help is provided in every menu.
The use of the boundary element method also benefits the user interface. Geometry definition is not
built around a mesh and the accuracy of results is easily checked by sound means.

One has very powerful options to test the accuracy of a solution. On boundaries, the calculated and
assigned conditions can be compared. Along interfaces, the calculated and actual field
discontinuities can be checked. One could test the field values inside conductors. According to
maximum principle of harmonic functions, the largest errors occur on boundaries. Hence these
checks indicate the largest error in a solution.

In the FEM, since the results are provided by interpolation no such simple and quick ways of
checking the accuracy of a solution exits — on boundaries one would obtain exactly what was
assigned.

APPLICATION

A Bus Bar Problem

Maximum value of electric field magnitude (kV/mm) is calculated for a pair of rectangular bus bars
shown in Fig. 1.

Fig. 1: Rectangular Bus bar configuration.
Table 1 presents the results for varying distance d and corner radius r. Dimensions are in inches.
Table 1

Bus bar problem results.

d r ELECTRO FEM
2.0 0.125 2.6 2.7
2.0 0.0625 2.9 3.3
2.0 0.0 9.6 5.9
2.5 0.0 8.6 5.0
2.8 0.0 8.2 4.5
3.0 0.0 7.9 4.3
3.5 0.0 7.3 3.8
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When r = 0, BEM consistently gives higher values as the number of elements is increased. This is
expected as the number of elements is increased. This is expected as the field is infinite at the corner.
When corners are rounded, FEM gives values higher than BEM, possibly due to the artificial
truncation of the open region.

CONCLUSIONS

The boundary element has been shown to be an efficient technique for the solution of Laplace’s
equation for piecewise homogeneous media. This is mainly due to the reduction of one in
dimensionality as all the unknowns are located only on the boundaries and interfaces. This differs
from the finite difference and finite element methods in which the whole must be discretized. The
unknown, computed using the boundary element method, is the equivalent charge that sustains the
field. Once the equivalent charge is known any parameter can be derived.
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