Thermal Applications

  • induction heating

    Temperature contours inside a copper sphere with a diameter of 2 cm

  • induction heating

    Temperature Contours showing heating effects of eddy
    currents induced in metal switchgear enclosure

  • induction heating

    Current Density Contour Plot in 3D model of
    copper tube induction coil

  • induction heating

    Temperature Contours in shaft heated by two turn
    induction coil with magnetic flux concentrator

  • induction heating

    Current Density Contour plot in workpiece and
    coils in Rotational Symmetric model

  • induction heating

    Magnetic Field lines and Temperature contour
    plots for Aluminum slab inside solenoidal induction coil

Virtually all electrical devices generate heat in order to operate. In some cases this heat is unwanted such as energy lost in motors or printed circuits boards. For some special cases heating of parts is desirable for heat treatment applications. Some specific cases are induction hardening and part forming.

More recently the need for coupling magnetic, electric, and thermal fields has been addressed with the addition of software tools that deal with these multiphysics applications. Thus heat generated by conduction loss or eddy currents can be the source for thermal analysis.

Eddy Current heating produced by time varying magnetic fields can be either a primary design goal, or an undesirable side effect. Predicting the temperature rise in conducting bodies is a challenging analysis problem requiring coupled electromagnetic and thermal field solutions. To handle these applications, INTEGRATED has developed INDUCTO.

For systems that can be modeled as 2D or Rotational Symmetric, the OERSTED eddy current and KELVIN thermal solvers are combined to form INDUCTO 2D. For systems that require a full 3D analysis, the FARADAY eddy current and CELSIUS thermal solvers are combined to form INDUCTO 3D.





Thermal Applications

More Videos >>