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The Problem 

One of the most common questions in 
Electromagnetic simulation is "what/where is 
the maximum field?". When any kind of corner 
or edge is present the question becomes tricky. 
A corner is mathematically a singularity. You 
cannot ask what is the direction of the field at 
the corner - that depends on the direction from 
which you approach it. Furthermore, in cases 
like that to the left, the magnitude of the field 
is infinite at the corner. Hence, examining the 
field near a corner should produce increasingly 
high fields. The question posed is not 
meaningful because it depends on how close 
you approach the corner.  

Of course, no physical object has a perfect corner - there is some degree of roundness. Also, at the 

locations where the fields become extremely high, other phenemona will come into play to limit the field. 
So, while the field will have a maximum value, the reasons for that value are not trivial. Users of 
Electromagnetic CAE tools are often lulled into a false sense of security by answers that look physically 
correct. However, suppose you draw the corner as sharp - the correct answer for the model as you 
constructed it is a singular field at the corner. If your CAE tools do not predict this, they are giving the 
wrong answer to the question you posed. This may or may not be the correct answer to the real physical 
problem, but if it is correct it was by luck rather than because it was able to solve the correct physical 
problem. If you set the solver to a more accurate convergence, or refine the mesh around the corner, you 
should get a higher "maximum field". This is a Russian Roulette approach to simulation.  

At ENGINIA we've always contended that the correct approach is to insist the tool gives the correct answer 
to the question as posed. This provides the user with a tool they can use in an intelligent fashion rather 
than by relying on luck. The key is then simply to pose the question to reflect the actual physical problem 
realistically. Our first level of benchmarking is thus some analytic cases where uncertainty in 
measurement and modeling of the test case is not an issue. If you are using any of our competitors' CAE 
tools, you should be able to construct the models below in a matter of seconds for comparison.  

Jackson's Solution 

"Classical Electrodynamics, 2nd Edition" by J.D. Jackson addresses the generic problem illustrated above in 
section 2.11. He shows that close enough to a corner the voltage takes the form:  

 

Using this form we can create problems in which the am's can be determined to have an analytically 
defined corner problem. An example is given in figure 2:  



 

FIGURE 2: an analytically solvable problem 

In this problem one cannot, of course, have the 1 V and 0 V sections touch. However, treating them as 
coming infinitesimally close presents no problem to the math. In any model that is constructed a small 
discontinuity will be needed at these locations.  

Setting the radius of the arc to 1 m, and considering P anywhere on that arc:  

 
this is a basic Fourier series problem with a well known solution:  

 
So the field components are:  

 

 

 

 

 

Case #1: "Razor Edge" ( ) 

This is the most extreme case possible for very sharp edges, thin foils etc. The chosen model is shown in 
Figure 3:  



 

FIGURE 3: the Razor Edge model 

The model simply consists of a 1 m radius circle set at 0 V and a line segment extending from 0, 0 to -
0.99, 0 and set at 1 V. This model will be analyzed in our 2D electric simulation package ELECTRO.  

Prior to version 6.1 Electro users only had a "Boundary Element Method" (BEM) solver. We still 
recommend using this solver for most electric simulation problems, and especially ones where small 
features are present. To illustrate while avoiding any wrong impressions about the quality of our FEM 
solver, we compare ELECTRO with one of our commercial competitors who have been using the "Finite 
Element Method" (FEM) for many years.  

For simplicity in interpreting the results, a series of standard sampling points are given along the positive 
x axis. Here the y component of E is zero.  

As a quick test, the value is probed at x=0.01 - meaning we want the field at a distance from the corner 
of about 1% of the size of the piece. Clearly the longer we give the solver the better the solution can be.  

 

FIGURE 4: comparing BEM 
(Electro) & FEM (Other) 
accuracy versus solution time 

Using the "Boundary Element Method" enables ELECTRO to find better solutions faster. The reason is 
obvious if one examines the mesh used for calculation by each method:  



 

FIGURE 5: comparing BEM & 
FEM elements 

BEM elements are purely surface elements in this problem, used to model the charge distribution which 

results in the applied voltages. The FEM elements are areas used to compute the local voltage. Not only is 
it easier to get a mesh including very small detail with BEM, but the electric field is computed by 
integration from the charge, which incurs less numerical error than differentiating the voltage.  

The following three tables examine the difference between the two approaches in more detail:  

Default Solutions 
(Electro: 3 seconds, Other: 10 seconds) 

% error in ( )'s 

x Correct E ELECTRO OTHER Notice that:  

 ELECTRO (BEM) is 3 times faster  

 ELECTRO produces more accurate numbers 

in every case  

 even at x=0.8, a non-challenging location, 
ELECTRO is about 7 times more accurate 

Based on years of comparing numeric solvers, we 
expect to see this same general trend for any FEM 

code compared to BEM on this problem. 

0.8 0.395423635 
0.39512 
(0.078%) 

0.3975 
(0.53%) 

0.1 1.83015317 
1.8262 
(0.22%) 

1.861 
(1.7%) 

0.01 6.303166063 
6.185 
(1.9%) 

8.048 
(28%) 

0.001 20.11157327 
16.94 

(16%) 

12.66 

(37%) 

0.0001 63.65561168 
33.55 
(47%) 

12.94 
(80%) 

0.00001 201.3148353 
94.09 
(53%) 

12.96 
(94%) 

0.000001 636.6191357 
94.09 
(85%) 

12.97 
(98%) 

Both programs can easily be set to solve more accurately, this was just what you get by using the default 
settings. Below are the answers obtained with a higher accuracy setting for each program:  

Modified Solver Setup 
(Electro: 7 seconds, Other: 44 seconds) 

% error in ( )'s 

x Correct E ELECTRO OTHER Notice that:  

0.8 0.395423635 0.3954183  0.39557  



(0.0014%) (0.037%) 

 both programs now produce better answers  

 the ELECTRO solution is 6 times faster than 

the "Other" solution  

 ELECTRO now produces better than 1% 

accuracy down to 1/10,000th of the geometry 
scale 

0.1 1.83015317 
1.830127  
(0.0014%) 

1.83046  
(0.017%) 

0.01 6.303166063 
6.302590  
(0.0091%) 

6.32766  
(0.39%) 

0.001 20.11157327 
20.09547  
(0.080%) 

20.372  
(1.3%) 

0.0001 63.65561168 
63.13316  
(0.82%) 

82.51  
(30%) 

0.00001 201.3148353 
184.0527  
(8.6%) 

101.66  
(50%) 

0.000001 636.6191357 
405.6363  
(36%) 

102.97  
(84%) 

Modified Solver Setup 
(Electro: 15 seconds, Other: 686 seconds) 

% error in ( )'s 

x Correct E ELECTRO OTHER Notice that:  

 ELECTRO has again improved 
significantly for all locations  

 "Other" only made significant 

improvement for 0.8, 0.1 and 0.01  

 with ELECTRO in 15 seconds the solution 

can be accurate to within 2-3% for scales 
within a millionth of the geometry size. 

0.8 0.395423635 
0.3954213  
(0.00059%) 

3.95455  
(0.0079%) 

0.1 1.83015317 
1.830155  
(0.00010%) 

1.83144  
(0.070%) 

0.01 6.303166063 
6.303172  
(0.000094%) 

6.29532  
(0.12%) 

0.001 20.11157327 
20.11122  
(0.0018%) 

19.6486  
(2.3%) 

0.0001 63.65561168 
63.64274  
(0.020%) 

55.6532  
(12.6%) 

0.00001 201.3148353 
200.88  
(0.22%) 

106.412  
(47%) 

0.000001 636.6191357 
621.25  
(2.4%) 

108.311  
(83%) 

With both methods one can choose to refine the mesh locally in order to obtain a better answer in the 
region of interest. However, the advantages of BEM for this problem type will show up whether it is the 
program refining the mesh, or an educated user.  

Case #2: 90o Corner ( ) 

Figure 6 shows a suggested benchmark problem with a 90o corner. This is typical of many more problem 
types than case #1. The singularity is not as severe, but the problem is made challenging by also 
including the very thin gap between the pie piece at 1 V and the cylinder at 0 V. This is more like a real 
world problem in that there is a corner, but other geometry will also influence the solution. In fact, one 
can also use this as a benchmark for known solution for the E field in the gap. For a small gap this is a 
challenging problem too.  



 

FIGURE 6: 90o Corner Problem 

Below is a summary of the results, this time just focussing on a "long" calculation (where the word "long" 
has to be understood relative to which solver type is being used).  

Modified Solver Setup 
(Electro: 20 seconds, Other: 323 seconds) 

% error in ( )'s 

x Correct E ELECTRO OTHER 

0.8 0.52469989 
0.524710  
(0.0019%) 

0.524786  
(0.01%) 

0.1 1.747623467 
1.747621  
(0.00014%) 

1.7504  
(0.15%) 

0.01 3.931432953 
3.931284  
(0.0038%) 

3.93625  
(0.12%) 

0.001 8.4874 
8.4854  
(0.023%) 

8.567  
(0.93%) 

0.0001 18.287 
18.202  
(0.46%) 

18.61  
(1.8%) 

0.00001 39.40 
35.80  
(9.1%) 

19.74  
(50%) 

0.000001 84.88 
57.10  

(32.7%) 

19.82  

(77%) 

Again BEM shows superior speed and accuracy. This can be double-checked by using the new FEM code 
within ELECTRO.  



 

FIGURE 7: ELECTRO FEM 
Elements 

x Correct E 
ELECTRO 
FEM Solution 
90 seconds 

Notice that:  

 ELECTRO FEM solution was 90 seconds compared to 
323 for "Other" FEM program, the errors are higher in 
some locations and lower in others  

 overall conclusions for FEM vs BEM for this problem 
type are unchanged 

0.8 0.52469989 
0.5229  
(0.34%) 

0.1 1.747623467 
1.74528  
(0.13%) 

0.01 3.931432953 
3.821  
(2.8%) 

0.001 8.4874 
8.4891  
(0.02%) 

0.0001 18.287 
18.567  
(1.5%) 

0.00001 39.40 
34.89  
(11%) 

0.000001 84.88 
39.47  
(53%) 

Summary 

A simple to setup yet challenging to solve problem type has been proposed to benchmark the ability of 
CAE simulation software to give accurate field values in the vicinity of corners or sharp edges in a model. 
Two cases of this type illustrate why we believe the Boundary Element Method is the prefered solver type 
for this class of problems.  

Users with other programs are invited to perform their own calculations for comparison and to take our 

free 30 day evaluation to verify for themselves the relative speed and accuracy. A user of the "Other" 
program in this study would have good reason to worry their results around small features are not 
sufficiently accurate to properly predict when fields will be high enough for arcing/flashover to occur.  

The computer used in this study was running Windows 2000 at 2.4 GHz.  
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